40 IV. MathematicalExpectationsThesecondlineisnothingmorethantheusualdefinitionoftheStieltjesintegral+«>jadFW(a)=
E(*). (1)—00Formula (1) maythereforeserveas adefinitionof themathe-matical expectation E(x).Nowletubeafunctionoftheelementaryevent
£,anda;bearandom variable definedas asingle-valued functionx—
x(u)of
u.ThenP{km^x<(k
+1)m}=PW{kfn^
x(u)
<(k
+\)m},where
P(m)(A)istheprobability functionofu. It
thenfollowsfromthedefinitionoftheintegralthatE£(u)and, therefore,E(x)=Jx{u)PM(dE(«)) (2)whereE(u)denotesthesetofallpossiblevaluesofu.Inparticular, when uitself is a random variable wehave+00E(x)=jxP{dE)=jx(u)
P^idR1)=jx(a)dFW(a).
(3)E Rl
-00Whenx(u) iscontinuous,thelastintegralin
(3)
istheordinaryStieltjesintegral.Wemustnote,however,thattheintegraljx(a)dF^{a)canexistevenwhenthemathematicalexpectationE(x)doesnot.
FortheexistenceofE(x),itisnecessaryandsufficientthattheintegral
f\x(a)\dF(u){a)—00befinite
4.If
uis
apoint
(u
lfu
2,...,u
n)ofthe
spaceR^thenasaresultof (2):
4Cf.V. Glivenko,Surlesvaleursprobablesde fonctions,Rend.Accad.Linceiv.
8,1928,
pp.480-483.