40 IV. MathematicalExpectations
Thesecondlineisnothingmorethantheusualdefinitionofthe
Stieltjesintegral
+«>
jadFW(a)=
E(*). (1)
—00
Formula (1) maythereforeserveas adefinitionof themathe-
matical expectation E(x).
Nowletubeafunctionoftheelementaryevent
£,
anda;bea
random variable definedas asingle-valued functionx
—
x(u)
of
u.
Then
P{km^x<(k
+1)m}
=PW{kfn^
x(u)
<
(k
+
\)m},
where
P
(m)
(A)
istheprobability functionofu. It
thenfollows
fromthedefinitionoftheintegralthat
E
£(u)
and, therefore,
E(x)
=Jx{u)PM(dE(«)) (2)
whereE
(u)
denotesthesetofallpossiblevaluesofu.
Inparticular, when uitself is a random variable wehave
+00
E(x)=jxP{dE)=jx(u)
P^idR
1
)
=jx(a)dFW(a).
(3)
E R
l
-00
Whenx(u) iscontinuous,thelastintegralin
(3)
istheordinary
Stieltjesintegral.Wemustnote,however,thattheintegral
jx(a)dF^{a)
canexistevenwhenthemathematicalexpectationE(x)doesnot.
FortheexistenceofE(x),itisnecessaryandsufficientthatthe
integral
f\x(a)\dF(
u
){a)
—00
befinite
4
.
If
u
is
a
point
(u
lf
u
2
,...,u
n
)
ofthe
space
R^thenasaresult
of (2):
4
Cf.V. Glivenko,Surlesvaleursprobablesde fonctions,Rend.
Accad.
Linceiv.
8,
1928,
pp.
480-483.