Foundations of the theory of probability

(Jeff_L) #1
40 IV. MathematicalExpectations

Thesecondlineisnothingmorethantheusualdefinitionofthe

Stieltjesintegral

+«>

jadFW(a)=
E(*). (1)

—00

Formula (1) maythereforeserveas adefinitionof themathe-

matical expectation E(x).

Nowletubeafunctionoftheelementaryevent
£,

anda;bea

random variable definedas asingle-valued functionx


x(u)

of
u.

Then

P{km^x<(k
+1)m}

=PW{kfn^
x(u)
<

(k
+

\)m},

where
P

(m)

(A)

istheprobability functionofu. It
thenfollows

fromthedefinitionoftheintegralthat

E

£(u)

and, therefore,

E(x)

=Jx{u)PM(dE(«)) (2)

whereE

(u)

denotesthesetofallpossiblevaluesofu.

Inparticular, when uitself is a random variable wehave

+00

E(x)=jxP{dE)=jx(u)
P^idR

1

)

=jx(a)dFW(a).
(3)

E R

l
-00

Whenx(u) iscontinuous,thelastintegralin
(3)


istheordinary

Stieltjesintegral.Wemustnote,however,thattheintegral

jx(a)dF^{a)

canexistevenwhenthemathematicalexpectationE(x)doesnot.


FortheexistenceofE(x),itisnecessaryandsufficientthatthe

integral


f\x(a)\dF(

u

){a)

—00

befinite


4

.

If
u

is
a

point
(u
lf

u
2

,...,u
n

)

ofthe
space

R^thenasaresult

of (2):


4

Cf.V. Glivenko,Surlesvaleursprobablesde fonctions,Rend.

Accad.

Linceiv.
8,

1928,
pp.

480-483.
Free download pdf