§2.AbsoluteandConditionalMathematicalExpectations 41E{x)=ft...fx(ultu2,...,un)P<«i.«*.-.«>
(«*#»).(4)We
havealready seen that the conditional probability PB(A)possessesallthepropertiesofaprobabilityfunction.Thecorres-
pondingintegral
Eb(x)=
jx?B(dE)
(5)Ewecalltheconditionalmathematicalexpectation
of
therandomvariablexwithrespecttotheeventB.Since
pB(B
)=0, JxPB(dE)=0weobtainfrom (5) theequation
EB(x)=fxPB(dE)=
jxPB(dE)
+jxPB(dE)=JxPB(dE)E BBBWe
recallthatin
caseAaB,P(A\P{AB)
P{A">wethusobtain
BFrom
(6)
andtheequality(B) P(B)^B(x)=~
]jxP(dE),
(6)BjxP(dE)=P(B)EB{x).(7)A+Bweobtainatlast
JxP(dE)=JxP(dE)+jxP{dE)P(A)E
A(*)+P{B)EB(x)E^W-
—
p-;1-—
(8)and,
inparticular,wehavetheformulaEW=P(A)EA{*)+P(A)Ei(x). (9)