§
2.AbsoluteandConditionalMathematicalExpectations 41
E{x)
=
ft.
..
fx(ult
u
2
,...,
u
n
)
P<«i.«*.-.«>
(«*#»)
.
(4)
We
havealready seen that the conditional probability P
B
(A)
possessesallthepropertiesofaprobabilityfunction.Thecorres-
pondingintegral
Eb(x)
=
jx?
B
(dE)
(5)
E
wecalltheconditionalmathematicalexpectation
of
therandom
variablexwithrespecttotheeventB.Since
p
B(
B
)
=
0, JxPB
(dE)=0
weobtainfrom (5) theequation
E
B
(x)
=fxPB
(dE)
=
jxP
B
(dE)
+
jxP
B
(dE)
=JxPB
(dE)
E B
B
B
We
recallthatin
case
AaB,
P
(A\
P{AB)
P{A">
wethusobtain
B
From
(6)
andtheequality
(B) P(B)
^B(x)
=
~
]
jxP(dE),
(6)
B
jxP(dE)=P(B)E
B
{x).
(7)
A+B
weobtainatlast
JxP(dE)
=
JxP(dE)
+jxP{dE)
P(A)E
A(*)+
P{B)E
B
(x)
E^W-
—
p-;
1
-—
(8)
and,
inparticular,wehavetheformula
EW
=P(A)E
A
{*)+
P(A)Ei(x). (9)