Foundations of the theory of probability

(Jeff_L) #1
§

2.AbsoluteandConditionalMathematicalExpectations 41

E{x)

=

ft.

..

fx(ult

u

2

,...,

u

n

)

P<«i.«*.-.«>
(«*#»)

.

(4)

We


havealready seen that the conditional probability P

B

(A)

possessesallthepropertiesofaprobabilityfunction.Thecorres-


pondingintegral


Eb(x)

=
jx?

B

(dE)
(5)

E

wecalltheconditionalmathematicalexpectation
of


therandom

variablexwithrespecttotheeventB.Since


p

B(

B
)

=

0, JxPB

(dE)=0

weobtainfrom (5) theequation


E

B

(x)

=fxPB

(dE)

=
jxP

B

(dE)
+

jxP

B

(dE)

=JxPB

(dE)

E B

B

B

We


recallthatin
case

AaB,

P

(A\





P{AB)
P{A">

wethusobtain


B

From
(6)


andtheequality

(B) P(B)

^B(x)

=

~

]

jxP(dE),
(6)

B

jxP(dE)=P(B)E

B

{x).

(7)

A+B

weobtainatlast


JxP(dE)

=

JxP(dE)

+jxP{dE)

P(A)E
A(*)+

P{B)E

B

(x)

E^W-


p-;

1

-—

(8)

and,


inparticular,wehavetheformula

EW

=P(A)E

A

{*)+

P(A)Ei(x). (9)
Free download pdf