42 IV.MathematicalExpectations§- TheTchebycheffInequality
Let
f(x)bea non-negativefunction ofa realargumentx,whichforx
^aneverbecomessmallerthanb
>0.Thenforany-randomvariablexp[*^)s»,
(i)provided themathematicalexpectation
E
{/(*)} exists.For,E{f(x)}=jf(x)P(dE)
^jf(x)P(dE)^bP(x^a),fromwhich
(1)followsatonce.Forexample,foreverypositive
c
,P(x^a)^E-^. (2)Nowlet
f(x)benon-negative,even,and,forpositivex,non-decreasing.Thenforeveryrandomvariablexandforanychoiceoftheconstanta>thefollowinginequalityholdsP(|*|fea)3SIipp.(3).Inparticular,P(|*-E(*)|^a)
£E/{Vf
W>(4)1f(a)Especially
importantisthecase
f(x)=
x2.Wethenobtainfrom(3)and
(4)P(\x\&*)^^p.
(5)P(|,-EW
|^.)^ife^.^,
(6)whereoHx)=E{x-E(x)}*iscalledthevarianceofthevariablex.Itiseasytocalculatethato*(x)=
E(x*)-{E(x)y.If
f(x)isbounded:\f(x)\^K,thenalowerboundforP(\x\
^a) canbefound.For