Foundations of the theory of probability

(Jeff_L) #1
42 IV.MathematicalExpectations

§


  1. TheTchebycheffInequality


Let
f(x)

bea non-negativefunction ofa realargumentx,

whichforx
^

aneverbecomessmallerthanb
>

0.Thenforany-

randomvariablex

p[*^)s»,

(i)

provided themathematicalexpectation


E
{/(*)} exists.For,

E{f(x)}=jf(x)

P(dE)
^jf(x)P(dE)^bP(x^a)

,

fromwhich
(1)

followsatonce.

Forexample,

foreverypositive
c
,

P(x^a)^

E

-^. (2)

Nowlet
f(x)

benon-negative,even,and,forpositivex,non-

decreasing.Thenforeveryrandomvariablexandforanychoice

oftheconstanta>

thefollowinginequalityholds

P(|*|fea)3S

Iipp.

(3).

Inparticular,

P(|*-E(*)|

^

a)
£

E/{

Vf

W>





(4)

1

f(a)

Especially
importantisthecase
f(x)

=
x

2

.Wethenobtainfrom

(3)and
(4)

P(\x\&*)^^p.
(5)

P(|,-E

W

|^.)^ife^.^,

(6)

where

oHx)

=E{x-E(x)}*

iscalledthevarianceofthevariablex.Itiseasytocalculatethat

o*(x)

=
E(x*)-{E(x)y.

If
f(x)

isbounded:

\f(x)

\^K,

thenalowerboundforP(\x\
^

a) canbefound.For
Free download pdf