42 IV.MathematicalExpectations
§
- TheTchebycheffInequality
Let
f(x)
bea non-negativefunction ofa realargumentx,
whichforx
^
aneverbecomessmallerthanb
>
0.Thenforany-
randomvariablex
p[*^)s»,
(i)
provided themathematicalexpectation
E
{/(*)} exists.For,
E{f(x)}=jf(x)
P(dE)
^jf(x)P(dE)^bP(x^a)
,
fromwhich
(1)
followsatonce.
Forexample,
foreverypositive
c
,
P(x^a)^
E
-^. (2)
Nowlet
f(x)
benon-negative,even,and,forpositivex,non-
decreasing.Thenforeveryrandomvariablexandforanychoice
oftheconstanta>
thefollowinginequalityholds
P(|*|fea)3S
Iipp.
(3).
Inparticular,
P(|*-E(*)|
^
a)
£
E/{
Vf
W>
(4)
1
f(a)
Especially
importantisthecase
f(x)
=
x
2
.Wethenobtainfrom
(3)and
(4)
P(\x\&*)^^p.
(5)
P(|,-E
W
|^.)^ife^.^,
(6)
where
oHx)
=E{x-E(x)}*
iscalledthevarianceofthevariablex.Itiseasytocalculatethat
o*(x)
=
E(x*)-{E(x)y.
If
f(x)
isbounded:
\f(x)
\^K,
thenalowerboundforP(\x\
^
a) canbefound.For