Foundations of the theory of probability

(Jeff_L) #1
§4.

SomeCriteriaforConvergence 43

E
(/(*))==//(*)

P{dE)
=jf(x)

P(dE)

+//(*)

P(dE)

^f{a)P(\x\<

a)
+

KP()x\

>
a)
£/(«)+

KP(|*|>a)

andtherefore


P(l^l^a)^

E{/(

^-

/(
^

. (7)


Ifinsteadof
f(x)

therandomvariablexitselfisbounded,

1*1

^M

,

then
/(#)
g


f(M),

andinsteadof
(7),

wehavetheformula

P(|*|a«U

E(/

y


(a)

. (8)


Inthecase
/(#)

=
a;

2

,

wehavefrom
(8)

§


  1. SomeCriteriaforConvergence


Let

Xi,
%2y


  • ••
    yXni

    • ••
      \




*
/

beasequenceofrandomvariablesand
f(x)

beanon-negative,

even, and for positive x a monotonically increasing function

5

.

Thenthefollowingtheoremsaretrue

:

I.

Inorderthat
thesequence(
1

)

converge
in

probability
the

followingconditionissufficient:Foreache> thereexistsann

suchthatforevery
p

>0,thefollowinginequalityholds

:

E
{f(x
n+p


  • *„)}<


e.
(2)

II. Inorderthatthesequence
(1)

convergeinprobabilityto

therandomvariable
x,

thefollowingconditionissufficient

:

HmE{/(*
n

-%)}

=
0.
(3)

n-*

+oo

III.
If
f(x)

is boundedandcontinuous
and/(0) =0, then

conditionsIandIIarealsonecessary.

IV. If
f(x)

is continuous,

/(0)

=
0,and thetotality of all

x
u

x
2
,

.

.

.

,

x

m

...,x

is
bounded,thenconditionsIandIIarealso

necessary.

5

Therefore
f(x)> ifx=f=0.
Free download pdf