§4.
SomeCriteriaforConvergence 43
E
(/(*))==//(*)
P{dE)
=jf(x)
P(dE)
+//(*)
P(dE)
^f{a)P(\x\<
a)
+
KP()x\
>
a)
£/(«)+
KP(|*|>a)
andtherefore
P(l^l^a)^
E{/(
^-
/(
^
. (7)
Ifinsteadof
f(x)
therandomvariablexitselfisbounded,
1*1
^M
,
then
/(#)
g
f(M),
andinsteadof
(7),
wehavetheformula
P(|*|a«U
E(/
y
(a)
. (8)
Inthecase
/(#)
=
a;
2
,
wehavefrom
(8)
§
- SomeCriteriaforConvergence
Let
Xi,
%2y
- ••
yXni- ••
\
- ••
*
/
beasequenceofrandomvariablesand
f(x)
beanon-negative,
even, and for positive x a monotonically increasing function
5
.
Thenthefollowingtheoremsaretrue
:
I.
Inorderthat
thesequence(
1
)
converge
in
probability
the
followingconditionissufficient:Foreache> thereexistsann
suchthatforevery
p
>0,thefollowinginequalityholds
:
E
{f(x
n+p
- *„)}<
e.
(2)
II. Inorderthatthesequence
(1)
convergeinprobabilityto
therandomvariable
x,
thefollowingconditionissufficient
:
HmE{/(*
n
-%)}
=
0.
(3)
n-*
+oo
III.
If
f(x)
is boundedandcontinuous
and/(0) =0, then
conditionsIandIIarealsonecessary.
IV. If
f(x)
is continuous,
/(0)
=
0,and thetotality of all
x
u
x
2
,
.
.
.
,
x
m
...,x
is
bounded,thenconditionsIandIIarealso
necessary.
5
Therefore
f(x)> ifx=f=0.