§4.SomeCriteriaforConvergence 43E
(/(*))==//(*)P{dE)
=jf(x)P(dE)+//(*)P(dE)^f{a)P(\x\<a)
+KP()x\>
a)
£/(«)+KP(|*|>a)andtherefore
P(l^l^a)^E{/(^-/(
^. (7)
Ifinsteadof
f(x)therandomvariablexitselfisbounded,1*1^M
,then
/(#)
g
f(M),andinsteadof
(7),wehavetheformulaP(|*|a«UE(/y
(a). (8)
Inthecase
/(#)=
a;2,wehavefrom
(8)§- SomeCriteriaforConvergence
LetXi,
%2y- ••
yXni- ••
\
- ••
*
/beasequenceofrandomvariablesand
f(x)beanon-negative,even, and for positive x a monotonically increasing function5.Thenthefollowingtheoremsaretrue:I.Inorderthat
thesequence(
1)converge
inprobability
thefollowingconditionissufficient:Foreache> thereexistsannsuchthatforevery
p>0,thefollowinginequalityholds:E
{f(x
n+p- *„)}<
e.
(2)II. Inorderthatthesequence
(1)convergeinprobabilitytotherandomvariable
x,thefollowingconditionissufficient:HmE{/(*
n-%)}=
0.
(3)n-*+ooIII.
If
f(x)is boundedandcontinuous
and/(0) =0, thenconditionsIandIIarealsonecessary.IV. If
f(x)is continuous,/(0)=
0,and thetotality of allx
ux
2
,...,xm...,xis
bounded,thenconditionsIandIIarealsonecessary.5Therefore
f(x)> ifx=f=0.