44 IV.MathematicalExpectations
FromIIandIV,weobtaininparticularV. Inorderthat sequence
(1)converge
inprobabilitytox,itissufficientthat
limE(a;
n-a;)2=
.
(4)If
alsothe
totalityofallx
ltx
2 ,...,x
n,...,xisbounded,thentheconditionisalsonecessary.Forproofsof I- IVseeSlutsky
[1]
andFrechet
[1].How-ever, thesetheorems follow almost
immediatelyfrom formulas(3)and
(8)oftheprecedingsection.§- DifferentiationandIntegrationofMathematicalExpectations
withRespecttoaParameterLet
usputeachelementaryevent
$intocorrespondencewith
adefinite
realfunctionx(t) ofarealvariablet.
Wesaythatx(t)isarandomfunction ifforeveryfixedt,thevariablex(t) isarandomvariable.Thequestionnowarises,underwhatconditionscanthemathematicalexpectationsignbeinterchangedwiththeintegration
anddifferentiationsigns.Thetwofollowingtheorems,thoughtheydonotexhausttheproblem,canneverthelessgiveasatisfactoryanswertothisquestioninmanysimplecases.TheoremI://themathematicalexpectationE[x(t)~\isfiniteforanyt,andx(t) isalways
differ-entiableforanyt,whilethederivativex'(t)
ofx(t) withrespecttotisalwayslessinabso-lutevaluethansome constantM,then^E(x(t))=
E(x'(t)).Theorem II://x(t) alwaysremainsless,inabsolutevalue,thansomeconstantKandisintegrableintheRiemannsense,thenb r bJE(x(t))dt=E jx(t)dta
laprovidedE[x(t)] isintegrableintheRiemannsense.Proof
ofTheoremI.Letusfirstnote thatx'(t)asthelimitoftherandomvariablesx(t
+h)-x(t)
1 1hn-\, -,...,-,
...is also a randomvariable. Sincex'(t) is bounded, themathe-