44 IV.MathematicalExpectations
FromIIandIV,weobtaininparticular
V. Inorderthat sequence
(1)
converge
inprobabilitytox,
itissufficientthat
limE(a;
n
-a;)
2
=
.
(4)
If
also
the
totalityofallx
lt
x
2 ,
..
.
,x
n,
..
.
,xisbounded,thenthe
conditionisalsonecessary.
Forproofsof I
- IVseeSlutsky
[1]
andFrechet
[1].
How-
ever, thesetheorems follow almost
immediatelyfrom formulas
(3)
and
(8)
oftheprecedingsection.
§
- DifferentiationandIntegrationofMathematicalExpectations
withRespecttoaParameter
Let
us
puteachelementaryevent
$
intocorrespondencewith
a
definite
realfunctionx(t) ofarealvariable
t.
Wesaythat
x(t)
isarandomfunction ifforeveryfixedt,thevariablex(t) isa
randomvariable.Thequestionnowarises,underwhatconditions
canthemathematicalexpectationsignbeinterchangedwiththe
integration
and
differentiationsigns.Thetwofollowingtheorems,
thoughtheydonotexhausttheproblem,canneverthelessgivea
satisfactoryanswertothisquestioninmanysimplecases.
TheoremI://themathematicalexpectationE[x(t)~\isfinite
for
anyt,andx(t) isalways
differ
-entiableforanyt,whilethe
derivativex'(t)
of
x(t) withrespecttotisalwayslessinabso-
lutevaluethansome constantM,
then
^E(x(t))=
E(x'(t)).
Theorem II://x(t) always
remainsless,inabsolutevalue,
thansomeconstantKandisintegrable
intheRiemannsense,then
b r b
JE(x(t))dt=
E jx(t)dt
a
la
providedE[x(t)] isintegrableintheRiemann
sense.
Proof
of
TheoremI.Letusfirstnote thatx'(t)asthelimit
of
therandomvariables
x(t
+
h)-x(t)
1 1
h
n-\, -,...,-,
...
is also a random
variable. Sincex'(t) is bounded, themathe-