§
5.Differentiationand
Integration
of
MathematicalExpectations
45
matical expectation E[x'(t)] exists (Property VII of mathe-
maticalexpectation,in
§
2). Letuschoosea fixed tanddenote
byA theevent
xjt
+
h)
- xjt)
h
x'(t)
>
£
TheprobabilityP
(
A)tendstozeroash
—
foreverye
>
0.Since
x{t+h)
- %{t)
M, x(t)\^M
holdseverywhere,
andmoreoverinthecaseA
\
xjt
+
h)-
xjt)
then
h
-At)
Ex(t+h)^-Ex(t)
_
Ex
,
{t)
xit+h)
- xit)
-x\t)
P(A)E
2
xit+
h)
-xit)
x'it) P{A)E
J
h
xit+
h)
xit)
x\t)
^2M?iA)+
a.
Wemay choose thee
> arbitrarily, and P(A) is arbitrarily
smallforanysufficiently
smallh.Therefore
dt
Exit)
=lim
. Exit+h)-Exit)
Exit),
h+
whichwas
tobeproved.
Proofof TheoremII.Let
k
=
n
s
n
={]?x(t
+
kh),
^-~r-
b
Since S
n
converges to J
—
J
x(t) dt, we canchoose for any
a
e
> anN suchthatfromn^Ntherefollows theinequality
P(^)=P{|S,
-/|>£}<
£.
Ifweset
k=n
S:
=
l^Exit+kh)
=
EiS
n),
k=\
then
|S*-E(/)|
=
|E(S
W
-/)|^E|S
W
-/|
P(^)E
A
\S
n
J\
+9(A)Ei|S
n
J\{
^
2KP{A)
+
e
^
(2K
+
l)e.