Foundations of the theory of probability

(Jeff_L) #1

44 IV.MathematicalExpectations


FromIIandIV,weobtaininparticular

V. Inorderthat sequence
(1)

converge
inprobabilitytox,

itissufficientthat


limE(a;
n

-a;)

2

=
.
(4)

If
also

the
totalityofallx
lt

x
2 ,

..

.

,x
n,

..

.

,xisbounded,thenthe

conditionisalsonecessary.

Forproofsof I


  • IVseeSlutsky
    [1]


andFrechet
[1].

How-

ever, thesetheorems follow almost
immediatelyfrom formulas

(3)

and
(8)

oftheprecedingsection.

§


  1. DifferentiationandIntegrationofMathematicalExpectations


withRespecttoaParameter

Let
us

puteachelementaryevent
$

intocorrespondencewith
a

definite
realfunctionx(t) ofarealvariable

t.
Wesaythat

x(t)

isarandomfunction ifforeveryfixedt,thevariablex(t) isa

randomvariable.Thequestionnowarises,underwhatconditions

canthemathematicalexpectationsignbeinterchangedwiththe

integration
and

differentiationsigns.Thetwofollowingtheorems,

thoughtheydonotexhausttheproblem,canneverthelessgivea

satisfactoryanswertothisquestioninmanysimplecases.

TheoremI://themathematicalexpectationE[x(t)~\isfinite

for

anyt,andx(t) isalways
differ

-entiableforanyt,whilethe

derivativex'(t)
of

x(t) withrespecttotisalwayslessinabso-

lutevaluethansome constantM,

then

^E(x(t))=
E(x'(t)).

Theorem II://x(t) always

remainsless,inabsolutevalue,

thansomeconstantKandisintegrable

intheRiemannsense,then

b r b

JE(x(t))dt=

E jx(t)dt

a
la

providedE[x(t)] isintegrableintheRiemann

sense.

Proof
of

TheoremI.Letusfirstnote thatx'(t)asthelimit

of

therandomvariables

x(t
+

h)-x(t)
1 1

h

n-\, -,...,-,
...

is also a random

variable. Sincex'(t) is bounded, themathe-
Free download pdf