Foundations of the theory of probability

(Jeff_L) #1
ChapterV

CONDITIONAL PROBABILITIES AND

MATHEMATICAL EXPECTATIONS

§


  1. ConditionalProbabilities


In
§

6,ChapterI,wedennedtheconditionalprobability,P^

(B)

,

oftheeventBwithrespecttotrial%.Itwasthereassumedthat%


allows ofonlyafinitenumberofdifferentpossibleresults. We


can,however,defineP%(B)alsoforthecaseofan
%


withaninfinite

setofpossibleresults,i.e.thecaseinwhichthesetEispartitioned


into
an


infinite
number

of
non-intersectingsubsets.Inparticular,

weobtain
sucha


partitioning
ifweconsideranarbitraryfunction

uof£anddefineaselementsofthepartition9l„thesetsu


=
con-

stant.TheconditionalprobabilityP%
U


{B)
wealsodenotebyP
U

(B).

Anypartitioning 51 ofthesetEcanbedennedasthepartitioning


5i
M


whichis"induced"byafunctionuof
£,

ifoneassignstoevery
$,

asu(£),thatsetofthepartitioning
51


ofEwhichcontains
|.

Twofunctionsuandu'of
£

determinethesamepartitioning

5l
M


=
9l
M

'Of
thesetE

if
andonlyifthereexistsaone-to-one

cor-

respondence
u'

=
f(u) betweentheirdomains
$

U)

and
5

(M,)

such

thatv!
(£)


isidenticalwith
fu(£)

.Thereadercaneasilyshowthat

therandomvariablesP
M


(Z?) andP
M

*(B),definedbelow,areinthis

casethesame.Theyarethusdetermined,infact,bythepartition


9L

=
^itself,

TodefineP

U

(B) wemayusethefollowingequation:

P{u
C

a}(B)

=
E
{ucA}

P
u

(B). (1)

Itiseasy
toprovethat

ifthe
setE

(u)

ofallpossiblevaluesofuis

finite,equation
(1) holdstrueforany

choiceofA (whenP

U

(B)

is

defined
asin
§

6,Chap.I).Inthegeneralcase(in

whichP

U

(B)

isnot
yetdefined) weshallprovethatthere always

exists one

andonly
onerandomvariableP
U

(B) (exceptforthematter

of

equivalence)whichisdefinedasafunctionofuandwhichsatis-

fies
equation (1) for every choice of A from

5

(m)

sucn that

47
Free download pdf