ChapterV
CONDITIONAL PROBABILITIES AND
MATHEMATICAL EXPECTATIONS
§
- ConditionalProbabilities
In
§
6,ChapterI,wedennedtheconditionalprobability,P^
(B)
,
oftheeventBwithrespecttotrial%.Itwasthereassumedthat%
allows ofonlyafinitenumberofdifferentpossibleresults. We
can,however,defineP%(B)alsoforthecaseofan
%
withaninfinite
setofpossibleresults,i.e.thecaseinwhichthesetEispartitioned
into
an
infinite
number
of
non-intersectingsubsets.Inparticular,
weobtain
sucha
partitioning
ifweconsideranarbitraryfunction
uof£anddefineaselementsofthepartition9l„thesetsu
=
con-
stant.TheconditionalprobabilityP%
U
{B)
wealsodenotebyP
U
(B).
Anypartitioning 51 ofthesetEcanbedennedasthepartitioning
5i
M
whichis"induced"byafunctionuof
£,
ifoneassignstoevery
$,
asu(£),thatsetofthepartitioning
51
ofEwhichcontains
|.
Twofunctionsuandu'of
£
determinethesamepartitioning
5l
M
=
9l
M
'Of
thesetE
if
andonlyifthereexistsaone-to-one
cor-
respondence
u'
=
f(u) betweentheirdomains
$
U)
and
5
(M,)
such
thatv!
(£)
isidenticalwith
fu(£)
.Thereadercaneasilyshowthat
therandomvariablesP
M
(Z?) andP
M
*(B),definedbelow,areinthis
casethesame.Theyarethusdetermined,infact,bythepartition
9L
=
^itself,
TodefineP
U
(B) wemayusethefollowingequation:
P{u
C
a}(B)
=
E
{ucA}
P
u
(B). (1)
Itiseasy
toprovethat
ifthe
setE
(u)
ofallpossiblevaluesofuis
finite,equation
(1) holdstrueforany
choiceofA (whenP
U
(B)
is
defined
asin
§
6,Chap.I).Inthegeneralcase(in
whichP
U
(B)
isnot
yetdefined) weshallprovethatthere always
exists one
andonly
onerandomvariableP
U
(B) (exceptforthematter
of
equivalence)whichisdefinedasafunctionofuandwhichsatis-
fies
equation (1) for every choice of A from
5
(m)
sucn that
47