ChapterVCONDITIONAL PROBABILITIES ANDMATHEMATICAL EXPECTATIONS§- ConditionalProbabilities
In
§6,ChapterI,wedennedtheconditionalprobability,P^(B),oftheeventBwithrespecttotrial%.Itwasthereassumedthat%
allows ofonlyafinitenumberofdifferentpossibleresults. We
can,however,defineP%(B)alsoforthecaseofan
%
withaninfinitesetofpossibleresults,i.e.thecaseinwhichthesetEispartitioned
into
an
infinite
numberof
non-intersectingsubsets.Inparticular,weobtain
sucha
partitioning
ifweconsideranarbitraryfunctionuof£anddefineaselementsofthepartition9l„thesetsu
=
con-stant.TheconditionalprobabilityP%
U
{B)
wealsodenotebyP
U(B).Anypartitioning 51 ofthesetEcanbedennedasthepartitioning
5i
M
whichis"induced"byafunctionuof
£,ifoneassignstoevery
$,asu(£),thatsetofthepartitioning
51
ofEwhichcontains
|.Twofunctionsuandu'of
£determinethesamepartitioning5l
M
=
9l
M'Of
thesetEif
andonlyifthereexistsaone-to-onecor-respondence
u'=
f(u) betweentheirdomains
$U)and
5(M,)suchthatv!
(£)
isidenticalwith
fu(£).ThereadercaneasilyshowthattherandomvariablesP
M
(Z?) andP
M*(B),definedbelow,areinthiscasethesame.Theyarethusdetermined,infact,bythepartition
9L=
^itself,TodefinePU(B) wemayusethefollowingequation:P{u
Ca}(B)=
E
{ucA}P
u(B). (1)Itiseasy
toprovethatifthe
setE(u)ofallpossiblevaluesofuisfinite,equation
(1) holdstrueforanychoiceofA (whenPU(B)isdefined
asin
§6,Chap.I).Inthegeneralcase(inwhichPU(B)isnot
yetdefined) weshallprovethatthere alwaysexists oneandonly
onerandomvariableP
U(B) (exceptforthematterofequivalence)whichisdefinedasafunctionofuandwhichsatis-fies
equation (1) for every choice of A from5(m)sucn that47