Foundations of the theory of probability

(Jeff_L) #1
§

1.ConditionalProbabilities 49

0(A)

=

//(f)

P(dE).

A

Inorderto

applythistheoremtoourcase,weneedtoprove


that

Q(A) =
P(Bu-HA))

isacompletely

additivefunctionon

Jp>,

2°,
thatfromQ(A)+0

followsthe


inequalityP

(M

>(A)
>

0.

Firstly,


follows

from

^P{Bu-HA))^

P(u-HA))

=
P<

m

HA)

.

Fortheproofof


weset

A=

Z

A
n-

then


u-

l

(A)=%u-HA
n
)

n

and

B«->(^)=2B«-

l

(4).

n

SincePiscompletelyadditive,itfollowsthat

P{BurKA$=2P{Bu-HAj)

%

n

whichwastobeproved.

Fromtheequation (1) followsanimportant

formula (ifwe

setA

=#<«>)
:

P(B)=
E(P
U

(B)).
(3)

Nowweshallprovethefollowingtwofundamentalproperties

ofconditionalprobability.

Theorem I. Itisalmostsure that

0^P

u

(B) gl.
(4)

Theorem II.
//

B is decomposed into at most a countable

number
of

setsB

n

:

B=

ZB'nt 9

n

thenthefollowing equality holdsalmostsurely:

,

P«(£)=ZP»(£»)-
(5)

n

These
twopropertiesof P
U

(B) correspondtothetwo char-

acteristic properties
of the probability function P(B): that

g

P(B)

^

1 always,andthatP(B)iscompletelyadditive.These
Free download pdf