Foundations of the theory of probability

(Jeff_L) #1
50 V. ConditionalProbabilitiesandMathematicalExpectations

allowustocarryovermanyotherbasicpropertiesofthe
absolute

probabilityP(B)totheconditionalprobabilityP

U

(B).However,

wemustnotforgetthatP
U


(B) is,for
a

fixed
set

B,
arandomvari-

abledetermineduniquely onlytowithinequivalence.


ProofofTheorem

I.Ifwe

assume—contrarytotheassertion

tobeproved—thatonasetM

s

a
E

(M

> with
P

(M

>
(M) >0,thein-

equalityP
U

(B)
g

1

+e,
e>0, holdstrue,thenaccordingtofor-

mula
(1)


P{uc:M}{B)

=E

{ucM}

P

u

(B)^i
+

e,

whichis obviously impossible.In thesame wayweprove that

almostsurelyP

U

(B)
^

0.

Proofof

TheoremII. Fromtheconvergence oftheseries

ZE\P
u

(B

n)\

=2E(P

u

(fi

fl

))

=2P(£

n

)

=
P(B)

n n n

itfollowsfromPropertyVofmathematicalexpectation (Chap.

IV,
§

2) thattheseries

2P.(BJ

n

almostsurelyconverges.Sincetheseries

ZE
{

uoA}\Pu(B
n
)\=Z

E
{u<:A}(Pu(Bn))

=

£

P{
UC

A}(B
n)

=
P{uCA}(B)

n n n

converges foreverychoice ofthe setA suchthat P

(u>

*(A)
>0,

thenfromPropertyVofmathematicalexpectationjustreferred

toitfollowsthatforeachAoftheabovekindwehavetherelation

E

{

uc^}(|;P„(£
n

))

=|E(,

ei)(W)

=
P
{uca}(B)

=E

{ucA}

(P

u

(B

n))

f

andfromthis,equation
(5)

immediatelyfollows.

Toclosethissectionweshallpointouttwoparticularcases.

If, first,
u(i)

=

c (a

constant), then P
C

(A)

=
P(A) almost

surely. If, however, we

set
u(i)

=

£,

thenwe obtain at once

thatP$\A) isalmostsurelyequaltooneon

Aandisalmostsurely

equaltozeroonA. P${A)isthusrevealedtobe

thecharacteristic

functionofsetA.

§


  1. ExplanationofaBorelParadox


LetuschooseforourbasicsetE the setofall pointsona

sphericalsurface. Our
5

wil1betheaggregateofallBorel

sets

ofthe

sphericalsurface.Andfinally, ourP(A) istobepropor-

tional
to

themeasureofsetA.Letusnowchoosetwodiametrically
Free download pdf