Foundations of the theory of probability

(Jeff_L) #1
ChapterVI

INDEPENDENCE; THE LAW OF LARGE NUMBERS

§


  1. Independence


Definition 1 :Twofunctions,uandvof
|,

aremutuallyinde-

pendentifforanytwosets,Aof
$


(w)

,

andBof

%

(v)

,thefollow-

ing equationholds:


P(ucA,vczB)=P{uczA)P{vc:B)

=
PW(A)P«(B). (1)

If
thesets

E

(u)

and

E

{v)

consistofonlyafinitenumberofelements,

£(«)
=

%

+u

2

+


  • ••
    +u
    n,


#*>
=
»!+.

w,
+


  • ••






v

m

,

thenourdefinitionofindependenceofuandvis identicalwith


thedefinitionofindependenceofthepartitions


k

E=^{v

=
v
k
}

k

asin
§5,


Chap.I.

Forthe independenceofuandv,the followingcondition is

necessary and sufficient. For
any


choice of
set

A
in
$

(w)

the

following
equationholds almostcertainly:


P
v

(uczA)

=
P{uczA)t (2)

InthecaseP


(v

>(£)

=
0,bothequations
(1)

and
(2)

aresatisfied,

andthereforeweneed onlyprovetheir equivalence
inthecase


P

(v)

(B)
>

0.Inthiscase
(1) isequivalenttotherelation

P
{vc

b}(uczA)

=
P{uc:A) (3)

andthereforetotherelation


E

{vcB}

P

v

{uciA)=
P(«c2).
(4)

Ontheotherhand,itisobviousthatequation (4) followsfrom

57
Free download pdf