ChapterVIINDEPENDENCE; THE LAW OF LARGE NUMBERS§- Independence
Definition 1 :Twofunctions,uandvof
|,aremutuallyinde-pendentifforanytwosets,Aof
$
(w),andBof%(v),thefollow-ing equationholds:
P(ucA,vczB)=P{uczA)P{vc:B)=
PW(A)P«(B). (1)If
thesetsE(u)andE{v)consistofonlyafinitenumberofelements,£(«)
=%+u2+- ••
+u
n,
#*>
=
»!+.w,
+- ••
vm,thenourdefinitionofindependenceofuandvis identicalwith
thedefinitionofindependenceofthepartitions
kE=^{v=
v
k
}kasin
§5,
Chap.I.Forthe independenceofuandv,the followingcondition isnecessary and sufficient. For
any
choice of
setA
in
$(w)thefollowing
equationholds almostcertainly:
P
v(uczA)=
P{uczA)t (2)InthecaseP
(v>(£)=
0,bothequations
(1)and
(2)aresatisfied,andthereforeweneed onlyprovetheir equivalence
inthecase
P(v)(B)
>0.Inthiscase
(1) isequivalenttotherelationP
{vcb}(uczA)=
P{uc:A) (3)andthereforetotherelation
E{vcB}Pv{uciA)=
P(«c2).
(4)Ontheotherhand,itisobviousthatequation (4) followsfrom57