58 VI.Independence;TheLawofLarge
Numbers
(2).
Conversely
sinceP
v
(uczA)
isuniquelydeterminedby
(4)
towithinprobability
zero,thenequation
(2)
followsfrom
(4)
almostcertainly.
Definition 2 :LetMbeasetoffunctions
u^
(I)
of
t
These
functionsarecalledmutuallyindependentintheirtotality
ifthe
following condition is satisfied. Let W and M" be
two non-
intersecting subsetsofM, andletA' (orA")
beasetfrom
g
definedby
a
relationamongu fromM'
(orM");thenwehave
P(A'A")=
P(A')P\A").
TheaggregateofalP«
/t
ofW (orofM") canberegardedas
coordinates of somefunctionv! (or u"). Definition 2 requires
onlytheindependenceofu'andu"inthesenseofDefinition 1 for
eachchoiceofnon-intersectingsetsWandM"
.
Ifu
lt
Mz,...,w
n
aremutuallyindependent,theninallcases
P{u
l
aA
l
,
u
2
cA
2
,...,u
n
czA
n
}
(K)
=
P(«!c
4J
P(«
t
c^
2
).,P(m
b
c^
providedthesets A
A:
belongtothecorresponding
%
{Uk)
(proved
by induction).
This equationis not ingeneral,
however,atall
sufficientforthemutualindependenceofu
lt
u
2
,...,u
n
.
Equation
(5)
iseasilygeneralizedforthecaseofacountably
infiniteproduct.
From themutual independence of u^ ineach finite group
(
w
mi»
u
/*,>
•->u
t*k)
ft doesn°t
necessarily follow that
all u
fl
are
mutuallyindependent.
Finally,itiseasytonotethatthemutualindependenceofthe
functions
u^
isinrealityapropertyofthecorrespondingparti-
tionsty
Ufl
.Further,if u^ aresingle-valuedfunctionsofthecor-
respondingu
fi
,
thenfromthemutualindependenceof
u^
follows
thatofu'.
§
- IndependentRandomVariables
Ifx
u
x
2 ,
. ..
,
x
n
aremutuallyindependentrandomvariables
thenfromequation
(2)
oftheforegoingparagraphfollows, in
particular,theformula
F^
* *»>
(a
v
a
2
,
..
.
,a
n
)
=
F<**>(a
x
)
F™(a
2
)
.
..F^)(a
n
)
.
(
1
)
//
inthiscasethefield
g
(x
»**••>**)
consistsonly
of
Borelsets
of