ChapterVI
INDEPENDENCE; THE LAW OF LARGE NUMBERS
§
- Independence
Definition 1 :Twofunctions,uandvof
|,
aremutuallyinde-
pendentifforanytwosets,Aof
$
(w)
,
andBof
%
(v)
,thefollow-
ing equationholds:
P(ucA,vczB)=P{uczA)P{vc:B)
=
PW(A)P«(B). (1)
If
thesets
E
(u)
and
E
{v)
consistofonlyafinitenumberofelements,
£(«)
=
%
+u
2
+
- ••
+u
n,
#*>
=
»!+.
w,
+
- ••
v
m
,
thenourdefinitionofindependenceofuandvis identicalwith
thedefinitionofindependenceofthepartitions
k
E=^{v
=
v
k
}
k
asin
§5,
Chap.I.
Forthe independenceofuandv,the followingcondition is
necessary and sufficient. For
any
choice of
set
A
in
$
(w)
the
following
equationholds almostcertainly:
P
v
(uczA)
=
P{uczA)t (2)
InthecaseP
(v
>(£)
=
0,bothequations
(1)
and
(2)
aresatisfied,
andthereforeweneed onlyprovetheir equivalence
inthecase
P
(v)
(B)
>
0.Inthiscase
(1) isequivalenttotherelation
P
{vc
b}(uczA)
=
P{uc:A) (3)
andthereforetotherelation
E
{vcB}
P
v
{uciA)=
P(«c2).
(4)
Ontheotherhand,itisobviousthatequation (4) followsfrom
57