Foundations of the theory of probability

(Jeff_L) #1

60 VI. Independence;TheLawofLargeNumbers


InordertoshowthisitisenoughtotakeR

M

forthebasicsetE

andB%

M

forthefield
g,

andtodefinethedistributionfunctions

F/hp*.../** (

seeChap.Ill,
§4)

byequation
(3).

Letusalsonotethatfromthemutualindependenceofeach

finitegroupofvariables x^ (equation
(3))

therefollows,aswe

haveseenabove,themutualindependenceofall x^onB%


M

.In

more inclusive fields


of probability this propertymay
be lost.

Toconcludethissection,

we
shallgiveafewmorecriteriafor

theindependenceoftworandomvariables.


Iftwo randomvariables xand
y

aremutuallyindependent

andif E(x)andE(y) arefinitethenalmostcertainly


E,(y)

=E(y)

(5)

E

y

(x)=E(x).

These formulas represent an immediate consequence of the


seconddefinitionofconditionalmathematicalexpectation (For-


mulas
(10)


and
(11)

ofChap.V,
§

4).Therefore,inthecaseof

independenceboth


E[y-E,(y)J»

and

2

=

E[*-E,(*)]»

1

o

2

(y)

S

o

2

(#)

areequaltozero (providedv


2

(x) > andv

2

(y)

>0).Thenum-

ber
f


2

iscalledthecorrelationratioof
y

withrespecttox,and
g

2

thesameforxwithrespectto
y


(Pearson)

.

From
(5)

itfurtherfollowsthat

E(xy)

=
E(x) E(y)

.
(6)

ToprovethisweapplyFormula(15) of
§


4, Chap.V:

E(xy)=EE

x

{xy)=E[xE

x(y)]

=E[xE(y)]=E(y)E(x).

Therefore, inthecase ofindependence


r

=

E(*,y)-E(x)E(y)

o (x)a

(y)

isalsoequaltozero;r,asis wellknown, isthecorrelation co-

efficient

of
x

and
y.

Iftworandom

variables
x

and
y

satisfyequation
(6),

then

theyarecalleduncorrected. Forthesum


S


x*+x
2

+...-fx
n
Free download pdf