60 VI. Independence;TheLawofLargeNumbers
InordertoshowthisitisenoughtotakeRMforthebasicsetEandB%Mforthefield
g,andtodefinethedistributionfunctionsF/hp*.../** (seeChap.Ill,
§4)byequation
(3).Letusalsonotethatfromthemutualindependenceofeachfinitegroupofvariables x^ (equation
(3))therefollows,aswehaveseenabove,themutualindependenceofall x^onB%
M.Inmore inclusive fields
of probability this propertymay
be lost.Toconcludethissection,we
shallgiveafewmorecriteriafortheindependenceoftworandomvariables.
Iftwo randomvariables xand
yaremutuallyindependentandif E(x)andE(y) arefinitethenalmostcertainly
E,(y)=E(y)(5)Ey(x)=E(x).These formulas represent an immediate consequence of the
seconddefinitionofconditionalmathematicalexpectation (For-
mulas
(10)
and
(11)ofChap.V,
§4).Therefore,inthecaseofindependenceboth
E[y-E,(y)J»and2=E[*-E,(*)]»1o2(y)So2(#)areequaltozero (providedv
2(x) > andv2(y)>0).Thenum-ber
f
2iscalledthecorrelationratioof
ywithrespecttox,and
g2thesameforxwithrespectto
y
(Pearson).From
(5)itfurtherfollowsthatE(xy)=
E(x) E(y).
(6)ToprovethisweapplyFormula(15) of
§
4, Chap.V:E(xy)=EEx{xy)=E[xEx(y)]=E[xE(y)]=E(y)E(x).Therefore, inthecase ofindependence
r=E(*,y)-E(x)E(y)o (x)a(y)isalsoequaltozero;r,asis wellknown, isthecorrelation co-efficientof
xand
y.Iftworandomvariables
xand
ysatisfyequation
(6),thentheyarecalleduncorrected. Forthesum
S—
x*+x
2+...-fx
n