60 VI. Independence;TheLawofLargeNumbers
InordertoshowthisitisenoughtotakeR
M
forthebasicsetE
andB%
M
forthefield
g,
andtodefinethedistributionfunctions
F/hp*.../** (
seeChap.Ill,
§4)
byequation
(3).
Letusalsonotethatfromthemutualindependenceofeach
finitegroupofvariables x^ (equation
(3))
therefollows,aswe
haveseenabove,themutualindependenceofall x^onB%
M
.In
more inclusive fields
of probability this propertymay
be lost.
Toconcludethissection,
we
shallgiveafewmorecriteriafor
theindependenceoftworandomvariables.
Iftwo randomvariables xand
y
aremutuallyindependent
andif E(x)andE(y) arefinitethenalmostcertainly
E,(y)
=E(y)
(5)
E
y
(x)=E(x).
These formulas represent an immediate consequence of the
seconddefinitionofconditionalmathematicalexpectation (For-
mulas
(10)
and
(11)
ofChap.V,
§
4).Therefore,inthecaseof
independenceboth
E[y-E,(y)J»
and
2
=
E[*-E,(*)]»
1
o
2
(y)
S
o
2
(#)
areequaltozero (providedv
2
(x) > andv
2
(y)
>0).Thenum-
ber
f
2
iscalledthecorrelationratioof
y
withrespecttox,and
g
2
thesameforxwithrespectto
y
(Pearson)
.
From
(5)
itfurtherfollowsthat
E(xy)
=
E(x) E(y)
.
(6)
ToprovethisweapplyFormula(15) of
§
4, Chap.V:
E(xy)=EE
x
{xy)=E[xE
x(y)]
=E[xE(y)]=E(y)E(x).
Therefore, inthecase ofindependence
r
=
E(*,y)-E(x)E(y)
o (x)a
(y)
isalsoequaltozero;r,asis wellknown, isthecorrelation co-
efficient
of
x
and
y.
Iftworandom
variables
x
and
y
satisfyequation
(6),
then
theyarecalleduncorrected. Forthesum
S
—
x*+x
2
+...-fx
n