Deep Learning and Robotics
n With fast growing sales, often difficult to keep up with customer support hiring, and especially training n AI can help manage ...
Pieter Abbeel --UC Berkeley | Gradescope| Covariant.AI ...
Pieter Abbeel --UC Berkeley | Gradescope| Covariant.AI ...
https://www.fda.gov/NewsEvents/Newsroom/PressAnnouncements/ucm604357.htm Pieter Abbeel --UC Berkeley | Gradescope| Covariant.AI ...
Self-Driving Cars ...
Self-Driving Cars -- Stats Pieter Abbeel --UC Berkeley | Gradescope| Covariant.AI ...
Self-Driving Cars -- Stats Pieter Abbeel --UC Berkeley | Gradescope| Covariant.AI ...
Energy-Inference-Accuracy Landscape on the Squeezelator ImageNet energy-accuracy for different NNs SqueezeNext vs SqueezeNet/Ale ...
n Robots perform programmed simple motions Existing Robotic Automation Pieter Abbeel --UC Berkeley | Gradescope| Covariant.AI ...
n Wave 1: Robots with “eyes” n Starting to happen now n Wave 2: Teachable Robots (“get help anywhere, anytime”) n Anticipated 5 ...
covariant.ai Pieter Abbeel --UC Berkeley | Gradescope| Covariant.AI ...
n Deep learning successes n Supervised learning = pattern recognition, if enough data (input -> output pairs), then neural ne ...
n Data n Compute n AI expertise Why Now? And is an AI winter coming? Pieter Abbeel --UC Berkeley | Gradescope| Covariant.AI ...
A (Short) History of AI § 1940 - 1950: Early days § 1943: McCulloch & Pitts: Boolean circuit model of brain § 1950: Turing's ...
Data [Source: domo.com] Pieter Abbeel --UC Berkeley | Gradescope| Covariant.AI ...
Compute: Moore’s Law [20-April-2018] Pieter Abbeel --UC Berkeley | Gradescope| Covariant.AI ~ 2x every 3 years ...
Compute: Neural Net Chip Development [20-April-2018] Pieter Abbeel --UC Berkeley | Gradescope| Covariant.AI 100 - 1000x? Sidenot ...
Compute: Ability to Compute over Many Machines Source: OpenAI Pieter Abbeel --UC Berkeley | Gradescope| Covariant.AI ...
n Companies making (lots of)money from AI this time around... Also, from an industry perspective Pieter Abbeel --UC Berkeley | G ...
Architecture Num neurons Num synapses Fly 100K = 10^5 10M = 10^7 AlexNet 650K = 10^6 60M = 10^8 Mouse 100M = 10^8100 B= 10^11 Hu ...
«
1
2
3
4
5
6
»
Free download pdf