CK-12-Pre-Calculus Concepts

(Marvins-Underground-K-12) #1

http://www.ck12.org Chapter 6. Analytic Trigonometry


Guided Practice



  1. Prove the sine of a difference identity.

  2. Use a sum or difference identity to find an exact value of cot(^512 π).

  3. Prove the following identity:
    sinsin((xx−+yy))=tantanxx−+tantanyy


Answers:



  1. Start with the cofunction identity and then distribute and work out the cosine of a sum and cofunction identities.


sin(α−β) =cos


2 −(α−β)

)


=cos

((π
2 −α

)



)


=cos


2 −α

)


cosβ−sin


2 −α

)


sinβ
=sinαcosβ−cosαsinβ

2.Start with the definition of cotangent as the inverse of tangent.


cot

( 5 π
12

)


=tan(^15 π
12

)


=tan( 9 π^1
12 −^412 π

)


=tan( 1351 ◦− 60 ◦)

=^1 +tan 135

◦tan 60◦
tan 135◦−tan 60◦
=^1 +(−^1 )·

√ 3


(− 1 )−√ 3


= (^1 −



3 )


(− 1 −√ 3 )


= (^1 −


√ 3 ) 2


(− 1 +√ 3 )·( 1 −√ 3 )


=(^1 −


√ 3 ) 2


−( 1 − 3 )


=(^1 −



3 )^2


2



  1. Here are the steps:

Free download pdf