3.5. COMBINING FUZZY RULES 111
In fuzzy control, the number
Wn
i=1Ai(x)=Ai^1 (x^1 )∧Ai^2 (x^2 )∧∑∑∑∧Aik(xk)
is called thestrengthof the ruleRifor the inputx. The fuzzy setRi,x(y)=
Ai(x)∧Bi(y)is called thecontrol outputof the ruleRifor the inputx,and
the fuzzy setRx(y)is theaggregated control outputfor the inputx.
Example 3.6Take the fuzzy setsAiandBidefinedinEquation3.8.
0
0.2
0.4
0.6
0.8
1
y
0.5 1 1.5x 2 2.5 3
A 1 andA 2
0
0.2
0.4
0.6
0.8
1
y
(^246) x 8 10 12 14
B 1 andB 2
At the pointx=1. 25 ,therulesìIfxisAithenyisBi,i=1, 2 ,î produce the
fuzzy set
R 1. 25 (y)=
° 3
4 ∧
1
8 y
¢
° if^0 ≤y≤^4
3
4 ∧
° 1
8 y
¢¢
∨
° 1
4 ∧
° 1
6 y−
2
3
¢¢
° if^4 ≤y≤^8
3
4 ∧
°
−^14 y+3
¢¢
∨
° 1
4 ∧
° 1
6 y−
2
3
¢¢
° if^8 ≤y≤^10
3
4 ∧
°
−^14 y+3
¢¢
∨
° 1
4 ∧
°
−^15 y+3
¢¢
° if^10 ≤y≤^12
1
4 ∧
°
−^15 y+3
¢¢
if 12 ≤y≤ 15
0 if otherwise
0
0.2
0.4
0.6
0.8
1
x
246810121416 y
[A 1 (1.25)∧B 1 (y)]∨[A 2 (1.25)∧B 2 (y)]
B 1 andB 2 (dotted lines)
3.5.3 Larsenmodel.........................
Given rules ìIfxisAithenyisBi,îi=1,...,n, they are combined in the
Larsen model as
R(x,y)=
_n
i=1
(Ai(x)∑Bi(y))
where∑indicates multiplication. For eachk-tuplex=(x 1 ,x 2 ,...,xk)this gives
a fuzzy set
Rx(y)=
_n
i=1
Ai(x)∑Bi(y)