Introduction to integration 327
subtraction.) Hence,
∫(
3 +
2
5
x− 6 x^2
)
dx
= 3 x+
(
2
5
)
x^1 +^1
1 + 1
−( 6 )
x^2 +^1
2 + 1
+c
= 3 x+
(
2
5
)
x^2
2
−( 6 )
x^3
3
+c= 3 x+
1
5
x^2 − 2 x^3 +c
Note that when an integral contains more than one term
there is no need to have an arbitrary constant for each;
just a single constantcat the end is sufficient.
Problem 6. Determine
∫ (
2 x^3 − 3 x
4 x
)
dx
Rearranging into standard integral form gives
∫ (
2 x^3 − 3 x
4 x
)
dx=
∫ (
2 x^3
4 x
−
3 x
4 x
)
dx
=
∫ (
1
2
x^2 −
3
4
)
dx=
(
1
2
)
x^2 +^1
2 + 1
−
3
4
x+c
=
(
1
2
)
x^3
3
−
3
4
x+c=
1
6
x^3 −
3
4
x+c
Problem 7. Determine
∫(
1 −t
) 2
dt
Rearranging
∫
( 1 −t)^2 dtgives
∫
( 1 − 2 t+t^2 )dt=t−
2 t^1 +^1
1 + 1
+
t^2 +^1
2 + 1
+c
=t−
2 t^2
2
+
t^3
3
+c
=t−t^2 +
1
3
t^3 +c
This example shows that functionsoftenhave tobe rear-
ranged into the standard form of
∫
axndxbefore it is
possible to integrate them.
Problem 8. Determine
∫
5
x^2
dx
∫
5
x^2
dx=
∫
5 x−^2 dx
Using the standard integral,
∫
axndx,whena=5and
n=−2, gives
∫
5 x−^2 dx=
5 x−^2 +^1
− 2 + 1
+c=
5 x−^1
− 1
+c
=− 5 x−^1 +c=−
5
x
+c
Problem 9. Determine
∫
3
√
xdx
For fractional powers it is necessary to appreciate
√nam=amn
∫
3
√
xdx=
∫
3 x
1
(^2) dx=
3 x
1
2 +^1
1
2
1
+c=
3 x
3
2
3
2
+c
= 2 x
3
(^2) +c= 2
√
x^3 +c
Problem 10. Determine
∫
− 5
9
√ 4
t^3
dt
∫
− 5
9
√ 4
t^3
dt=
∫
− 5
9 t
3
4
dt=
∫ (
−
5
9
)
t−
3
(^4) dt
(
−
5
9
)
t−
3
4 +^1
−
3
4
1
+c
(
−
5
9
)
t
1
4
1
4
+c=
(
−
5
9
)(
4
1
)
t
1
(^4) +c
=−
20
9
√ (^4) t+c
Problem 11. Determine
∫
4cos3xdx
From 2 of Table 35.1,
∫
4cos3xdx=( 4 )
(
1
3
)
sin3x+c
4
3
sin 3x+c
Problem 12. Determine
∫
5sin2θdθ