Basic Engineering Mathematics, Fifth Edition

(Amelia) #1

Introduction to integration 327


subtraction.) Hence,
∫(
3 +


2
5

x− 6 x^2

)
dx

= 3 x+

(
2
5

)
x^1 +^1
1 + 1

−( 6 )

x^2 +^1
2 + 1

+c

= 3 x+

(
2
5

)
x^2
2

−( 6 )

x^3
3

+c= 3 x+

1
5

x^2 − 2 x^3 +c

Note that when an integral contains more than one term
there is no need to have an arbitrary constant for each;
just a single constantcat the end is sufficient.


Problem 6. Determine

∫ (
2 x^3 − 3 x
4 x

)
dx

Rearranging into standard integral form gives
∫ (
2 x^3 − 3 x
4 x


)
dx=

∫ (
2 x^3
4 x


3 x
4 x

)
dx

=

∫ (
1
2

x^2 −

3
4

)
dx=

(
1
2

)
x^2 +^1
2 + 1


3
4

x+c

=

(
1
2

)
x^3
3


3
4

x+c=

1
6

x^3 −

3
4

x+c

Problem 7. Determine

∫(
1 −t

) 2
dt

Rearranging



( 1 −t)^2 dtgives

( 1 − 2 t+t^2 )dt=t−

2 t^1 +^1
1 + 1

+

t^2 +^1
2 + 1

+c

=t−

2 t^2
2

+

t^3
3

+c

=t−t^2 +

1
3

t^3 +c

This example shows that functionsoftenhave tobe rear-
ranged into the standard form of



axndxbefore it is
possible to integrate them.


Problem 8. Determine


5
x^2

dx


5
x^2

dx=


5 x−^2 dx

Using the standard integral,


axndx,whena=5and
n=−2, gives

5 x−^2 dx=

5 x−^2 +^1
− 2 + 1

+c=

5 x−^1
− 1

+c

=− 5 x−^1 +c=−

5
x

+c

Problem 9. Determine


3


xdx

For fractional powers it is necessary to appreciate
√nam=amn


3


xdx=


3 x

1

(^2) dx=
3 x
1
2 +^1
1
2




  • 1
    +c=
    3 x
    3
    2
    3
    2
    +c
    = 2 x
    3
    (^2) +c= 2

    x^3 +c
    Problem 10. Determine

    − 5
    9
    √ 4
    t^3
    dt

    − 5
    9
    √ 4
    t^3
    dt=

    − 5
    9 t
    3
    4
    dt=
    ∫ (

    5
    9
    )
    t−
    3
    (^4) dt


    (

    5
    9
    )
    t−
    3
    4 +^1

    3
    4




  • 1
    +c


    (

    5
    9
    )
    t
    1
    4
    1
    4
    +c=
    (

    5
    9
    )(
    4
    1
    )
    t
    1
    (^4) +c
    =−
    20
    9
    √ (^4) t+c
    Problem 11. Determine

    4cos3xdx
    From 2 of Table 35.1,

    4cos3xdx=( 4 )
    (
    1
    3
    )
    sin3x+c


    4
    3
    sin 3x+c
    Problem 12. Determine

    5sin2θdθ



Free download pdf