Introduction to integration 327
subtraction.) Hence,
∫(
3 +
2
5x− 6 x^2)
dx= 3 x+(
2
5)
x^1 +^1
1 + 1−( 6 )x^2 +^1
2 + 1+c= 3 x+(
2
5)
x^2
2−( 6 )x^3
3+c= 3 x+1
5x^2 − 2 x^3 +cNote that when an integral contains more than one term
there is no need to have an arbitrary constant for each;
just a single constantcat the end is sufficient.
Problem 6. Determine∫ (
2 x^3 − 3 x
4 x)
dxRearranging into standard integral form gives
∫ (
2 x^3 − 3 x
4 x
)
dx=∫ (
2 x^3
4 x−3 x
4 x)
dx=∫ (
1
2x^2 −3
4)
dx=(
1
2)
x^2 +^1
2 + 1−3
4x+c=(
1
2)
x^3
3−3
4x+c=1
6x^3 −3
4x+cProblem 7. Determine∫(
1 −t) 2
dtRearranging
∫
( 1 −t)^2 dtgives
∫
( 1 − 2 t+t^2 )dt=t−2 t^1 +^1
1 + 1+t^2 +^1
2 + 1+c=t−2 t^2
2+t^3
3+c=t−t^2 +1
3t^3 +cThis example shows that functionsoftenhave tobe rear-
ranged into the standard form of
∫
axndxbefore it is
possible to integrate them.
Problem 8. Determine∫
5
x^2dx∫
5
x^2dx=∫
5 x−^2 dxUsing the standard integral,∫
axndx,whena=5and
n=−2, gives
∫
5 x−^2 dx=5 x−^2 +^1
− 2 + 1+c=5 x−^1
− 1+c=− 5 x−^1 +c=−5
x+cProblem 9. Determine∫
3√
xdxFor fractional powers it is necessary to appreciate
√nam=amn∫
3√
xdx=∫
3 x1(^2) dx=
3 x
1
2 +^1
1
2
1
+c=
3 x
3
2
3
2
+c
= 2 x
3
(^2) +c= 2
√
x^3 +c
Problem 10. Determine
∫
− 5
9
√ 4
t^3
dt
∫
− 5
9
√ 4
t^3
dt=
∫
− 5
9 t
3
4
dt=
∫ (
−
5
9
)
t−
3
(^4) dt
(
−
5
9
)
t−
3
4 +^1
−
3
4
1
+c
(
−
5
9
)
t
1
4
1
4
+c=
(
−
5
9
)(
4
1
)
t
1
(^4) +c
=−
20
9
√ (^4) t+c
Problem 11. Determine
∫
4cos3xdx
From 2 of Table 35.1,
∫
4cos3xdx=( 4 )
(
1
3
)
sin3x+c
4
3
sin 3x+c
Problem 12. Determine
∫
5sin2θdθ