Basic Engineering Mathematics, Fifth Edition

(Amelia) #1

Introduction to integration 329


For example, the increase in the value of the integral
x^2 asxincreases from 1 to 3 is written as


∫ 3
1 x

(^2) dx.
Applying the limits gives
∫ 3
1
x^2 dx=
[
x^3
3
+c
] 3
1


(
33
3
+c
)

(
13
3
+c
)
=( 9 +c)−
(
1
3
+c
)
= 8
2
3
Note that thecterm always cancels out when limits are
applied and it need not be shown with definite integrals.
Problem 17. Evaluate
∫ 2
1
3 xdx
∫ 2
1
3 xdx=
[
3 x^2
2
] 2
1


{
3
2
( 2 )^2
}

{
3
2
( 1 )^2
}
= 6 − 1
1
2
= 4
1
2
Problem 18. Evaluate
∫ 3
− 2
( 4 −x^2 )dx
∫ 3
− 2
( 4 −x^2 )dx=
[
4 x−
x^3
3
] 3
− 2


{
4 ( 3 )−
( 3 )^3
3
}

{
4 (− 2 )−
(− 2 )^3
3
}
={ 12 − 9 }−
{
− 8 −
− 8
3
}
={ 3 }−
{
− 5
1
3
}
= 8
1
3
Problem 19. Evaluate
∫ 2
0
x( 3 + 2 x)dx
∫ 2
0
x( 3 + 2 x)dx=
∫ 2
0
( 3 x+ 2 x^2 )dx=
[
3 x^2
2




  • 2 x^3
    3
    ] 2
    0


    {
    3 ( 2 )^2
    2




  • 2 ( 2 )^3
    3
    }
    −{ 0 + 0 }
    = 6 +
    16
    3
    = 11
    1
    3
    or 11. 33
    Problem 20. Evaluate
    ∫ 1
    − 1
    (
    x^4 − 5 x^2 +x
    x
    )
    dx
    ∫ 1
    − 1
    (
    x^4 − 5 x^2 +x
    x
    )
    dx


    ∫ 1
    − 1
    (
    x^4
    x

    5 x^2
    x




  • x
    x
    )
    dx


    ∫ 1
    − 1
    (
    x^3 − 5 x+ 1
    )
    dx=
    [
    x^4
    4

    5 x^2
    2
    +x
    ] 1
    − 1


    {
    1
    4

    5
    2




  • 1
    }

    {
    (− 1 )^4
    4

    5 (− 1 )^2
    2
    +(− 1 )
    }


    {
    1
    4

    5
    2



  • 1
    }

    {
    1
    4

    5
    2
    − 1
    }
    = 2
    Problem 21. Evaluate
    ∫ 2
    1
    (
    1
    x^2


  • 2
    x
    )
    dxcorrect
    to 3 decimal places
    ∫ 2
    1
    (
    1
    x^2




  • 2
    x
    )
    dx


    ∫ 2
    1
    {
    x−^2 + 2
    (
    1
    x
    )}
    dx=
    [
    x−^2 +^1
    − 2 + 1
    +2lnx
    ] 2
    1


    [
    x−^1
    − 1
    +2lnx
    ] 2
    1


    [

    1
    x
    +2lnx
    ] 2
    1


    (

    1
    2
    +2ln2
    )

    (

    1
    1
    +2ln1
    )
    = 1. 886
    Problem 22. Evaluate
    ∫π/ 2
    0
    3sin2xdx
    ∫π/ 2
    0
    3sin2xdx


    [
    ( 3 )
    (

    1
    2
    )
    cos2x
    ]π/ 2
    0


    [

    3
    2
    cos2x
    ]π/ 2
    0


    {

    3
    2
    cos2

    2
    )}

    {

    3
    2
    cos2( 0 )
    }


    {

    3
    2
    cosπ
    }

    {

    3
    2
    cos0
    }



Free download pdf