150 3 Real Analysis3.2.8 Definite Integrals.........................................
Next, definite integrals. Here the limits of integration also play a role.Example.Letf:[ 0 , 1 ]→Rbe a continuous function. Prove that
∫π0xf (sinx)dx=π∫ π 20f(sinx)dx.Solution.We have
∫π0xf (sinx)dx=∫ π 20xf (sinx)dx+∫ππ 2
xf (sinx)dx.We would like to transform both integrals on the right into the same integral, and for that
we need a substitution in the second integral that changes the limits of integration. This
substitution should leavef(sinx)invariant, so it is natural to tryt=π−x. The integral
becomes
∫ π 20(π−t)f(sint)dt.Adding the two, we obtainπ
∫π 2
0 f(sinx)dx, as desired. 453.Compute the integral
∫ 1− 1√ (^3) x
√ (^31) −x+√ (^31) +xdx.
454.Compute
∫π
0
xsinx
1 +sin^2 x
dx.
455.Letaandbbe positive real numbers. Compute
∫b
a
e
xa
−e
bx
x
dx.
456.Compute the integral
I=
∫ 1
0√ (^32) x (^3) − 3 x (^2) −x+ 1 dx.