Advanced book on Mathematics Olympiad

(ff) #1

532 Real Analysis


444.Split the integral as

ex
2
dx+



2 x^2 ex
2
dx.

Denote the first integral byI 1. Then use integration by parts to transform the second
integral as

2 x^2 ex
2
dx=xex
2



ex
2
dx=xex
2
−I 1.

The integral from the statement is therefore equal to


I 1 +xex

2
−I 1 =xex

2
+C.

445.Adding and subtractingexin the numerator, we obtain

x+sinx−cosx− 1
x+ex+sinx


dx=


x+ex+sinx− 1 −ex−cosx
x+ex+sinx

dx

=


x+ex+sinx
x+ex+sinx
dx−


1 +ex+cosx
x+ex+sinx
dx

=x+ln(x+ex+sinx)+C.

(Romanian college entrance exam)

446.The trick is to bring a factor ofxinside the cube root:

(x^6 +x^3 )^3



x^3 + 2 dx=


(x^5 +x^2 )^3


x^6 + 2 x^3 dx.

The substitutionu=x^6 + 2 x^3 now yields the answer


1
6

(x^6 + 2 x^3 )^4 /^3 +C.

(G.T. Gilbert, M.I. Krusemeyer, L.C. Larson,The Wohascum County Problem Book,
MAA, 1993)


447.We want to avoid the lengthy method of partial fraction decomposition. To this end,
we rewrite the integral as


∫ x^2

(

1 +

1

x^2

)

x^2

(

x^2 − 1 +

1

x^2

)dx=

∫ 1 +^1

x^2
x^2 − 1 +

1

x^2

dx.
Free download pdf