532 Real Analysis
444.Split the integral as
∫
ex
2
dx+
∫
2 x^2 ex
2
dx.
Denote the first integral byI 1. Then use integration by parts to transform the second
integral as
∫
2 x^2 ex
2
dx=xex
2
−
∫
ex
2
dx=xex
2
−I 1.
The integral from the statement is therefore equal to
I 1 +xex
2
−I 1 =xex
2
+C.
445.Adding and subtractingexin the numerator, we obtain
∫
x+sinx−cosx− 1
x+ex+sinx
dx=
∫
x+ex+sinx− 1 −ex−cosx
x+ex+sinx
dx
=
∫
x+ex+sinx
x+ex+sinx
dx−
∫
1 +ex+cosx
x+ex+sinx
dx
=x+ln(x+ex+sinx)+C.
(Romanian college entrance exam)
446.The trick is to bring a factor ofxinside the cube root:
∫
(x^6 +x^3 )^3
√
x^3 + 2 dx=
∫
(x^5 +x^2 )^3
√
x^6 + 2 x^3 dx.
The substitutionu=x^6 + 2 x^3 now yields the answer
1
6
(x^6 + 2 x^3 )^4 /^3 +C.
(G.T. Gilbert, M.I. Krusemeyer, L.C. Larson,The Wohascum County Problem Book,
MAA, 1993)
447.We want to avoid the lengthy method of partial fraction decomposition. To this end,
we rewrite the integral as
∫ x^2
(
1 +
1
x^2
)
x^2
(
x^2 − 1 +
1
x^2
)dx=
∫ 1 +^1
x^2
x^2 − 1 +
1
x^2
dx.