Advanced book on Mathematics Olympiad

(ff) #1

534 Real Analysis


In=


n!(fn(x)−fn′(x))
fn(x)

dx=n!

∫ (

1 −

fn′(x)
fn(x)

)

dx=n!x−n!lnfn(x)+C

=n!x−n!ln

(

1 +x+

x^2
2!

+···+

xn
n!

)

+C.

(C. Mortici,Probleme Pregatitoare pentru Concursurile de Matematic ̆ ̆a(Training
Problems for Mathematics Contests), GIL, 1999)


451.The substitution is


u=

x

√ (^42) x (^2) − 1 ,
for which
du=
x^2 − 1
( 2 x^2 − 1 )^4



2 x^2 − 1

dx.

We can transform the integral as follows:

2 x^2 − 1
−(x^2 − 1 )^2


·

x^2 − 1
( 2 x^2 − 1 )^4


2 x^2 − 1

dx=


1

−x^4 + 2 x^2 − 1
2 x^2 − 1

·

x^2 − 1
( 2 x^2 − 1 )^4


2 x^2 − 1

dx

=


1

1 − x
4
2 x^2 − 1

·

x^2 − 1
( 2 x^2 − 1 )^4


2 x^2 − 1

dx

=


1

1 −u^4

du.

This is computed using Jacobi’s method for rational functions, giving the final answer to
the problem


1
4

ln

√ (^42) x (^2) − 1 +x
√ (^42) x (^2) − 1 −x−


1

2

arctan

√ (^42) x (^2) − 1
x


+C.

452.Of course, Jacobi’s partial fraction decomposition method can be applied, but it is
more laborious. However, in the process of applying it we factor the denominator as
x^6 + 1 =(x^2 + 1 )(x^4 −x^2 + 1 ), and this expression can be related somehow to the
numerator. Indeed, if we add and subtract anx^2 in the numerator, we obtain


x^4 + 1
x^6 + 1

=

x^4 −x^2 + 1
x^6 + 1

+

x^2
x^6 + 1

.

Now integrate as follows:

x^4 + 1
x^6 + 1


dx=


x^4 −x^2 + 1
x^6 + 1

dx+


x^2
x^6 + 1

dx=


1

x^2 + 1

dx+


1

3

(x^3 )′
(x^3 )^2 + 1

dx
Free download pdf