534 Real Analysis
In=
∫
n!(fn(x)−fn′(x))
fn(x)
dx=n!
∫ (
1 −
fn′(x)
fn(x)
)
dx=n!x−n!lnfn(x)+C
=n!x−n!ln
(
1 +x+
x^2
2!
+···+
xn
n!
)
+C.
(C. Mortici,Probleme Pregatitoare pentru Concursurile de Matematic ̆ ̆a(Training
Problems for Mathematics Contests), GIL, 1999)
451.The substitution is
u=
x
√ (^42) x (^2) − 1 ,
for which
du=
x^2 − 1
( 2 x^2 − 1 )^4
√
2 x^2 − 1
dx.
We can transform the integral as follows:
∫
2 x^2 − 1
−(x^2 − 1 )^2
·
x^2 − 1
( 2 x^2 − 1 )^4
√
2 x^2 − 1
dx=
∫
1
−x^4 + 2 x^2 − 1
2 x^2 − 1
·
x^2 − 1
( 2 x^2 − 1 )^4
√
2 x^2 − 1
dx
=
∫
1
1 − x
4
2 x^2 − 1
·
x^2 − 1
( 2 x^2 − 1 )^4
√
2 x^2 − 1
dx
=
∫
1
1 −u^4
du.
This is computed using Jacobi’s method for rational functions, giving the final answer to
the problem
1
4
ln
√ (^42) x (^2) − 1 +x
√ (^42) x (^2) − 1 −x−
1
2
arctan
√ (^42) x (^2) − 1
x
+C.
452.Of course, Jacobi’s partial fraction decomposition method can be applied, but it is
more laborious. However, in the process of applying it we factor the denominator as
x^6 + 1 =(x^2 + 1 )(x^4 −x^2 + 1 ), and this expression can be related somehow to the
numerator. Indeed, if we add and subtract anx^2 in the numerator, we obtain
x^4 + 1
x^6 + 1
=
x^4 −x^2 + 1
x^6 + 1
+
x^2
x^6 + 1
.
Now integrate as follows:
∫
x^4 + 1
x^6 + 1
dx=
∫
x^4 −x^2 + 1
x^6 + 1
dx+
∫
x^2
x^6 + 1
dx=
∫
1
x^2 + 1
dx+
∫
1
3
(x^3 )′
(x^3 )^2 + 1
dx