Advanced book on Mathematics Olympiad

(ff) #1

536 Real Analysis


455.Denote the value of the integral byI. With the substitutiont=abx we have


I=

∫b

a

e
bt
−e
ta
ab
t

·

−ab
t^2
dt=−

∫b

a

e
ta
−e
bt

t
dt=−I.

HenceI=0.


456.The substitutiont= 1 −xyields


I=

∫ 1

0

√ (^32) ( 1 −t) (^3) − 3 ( 1 −t) (^2) −( 1 −t)+ 1 dt=−


∫ 1

0

√ (^32) t (^3) − 3 t (^2) −t+ 1 dt=−I.
HenceI=0.
(Mathematical Reflections, proposed by T. Andreescu)
457.Using the substitutionsx=asint, respectively,x=acost, we find the integral to
be equal to both the integral


L 1 =

∫π/ 2

0

sint
sint+cost

dt

and the integral


L 2 =

∫π/ 2

0

cost
sint+cost

dt.

Hence the desired integral is equal to


1
2

(L 1 +L 2 )=

1

2

∫ π 2

0

1 dt=

π
4

.

458.Denote the integral byI. With the substitutiont=π 4 −xthe integral becomes


I=

∫ 0

π 4 ln

(

1 +tan


4
−t

))

(− 1 )dt=

∫ π 4

0

ln

(

1 +

1 −tant
1 +tant

)

dt

=

∫ π 4

0

ln

2

1 +tant
dt=

π
4
ln 2−I.

Solving forI, we obtainI=π 8 ln 2.


459.With the substitution arctanx=tthe integral takes the form


I=

∫ π 4

0

ln( 1 +tant)dt.
Free download pdf