536 Real Analysis
455.Denote the value of the integral byI. With the substitutiont=abx we have
I=
∫bae
bt
−e
ta
ab
t·
−ab
t^2
dt=−∫bae
ta
−e
btt
dt=−I.HenceI=0.
456.The substitutiont= 1 −xyields
I=
∫ 1
0√ (^32) ( 1 −t) (^3) − 3 ( 1 −t) (^2) −( 1 −t)+ 1 dt=−
∫ 1
0√ (^32) t (^3) − 3 t (^2) −t+ 1 dt=−I.
HenceI=0.
(Mathematical Reflections, proposed by T. Andreescu)
457.Using the substitutionsx=asint, respectively,x=acost, we find the integral to
be equal to both the integral
L 1 =
∫π/ 20sint
sint+costdtand the integral
L 2 =
∫π/ 20cost
sint+costdt.Hence the desired integral is equal to
1
2(L 1 +L 2 )=
1
2
∫ π 201 dt=π
4.
458.Denote the integral byI. With the substitutiont=π 4 −xthe integral becomes
I=
∫ 0
π 4 ln(
1 +tan(π
4
−t))
(− 1 )dt=∫ π 40ln(
1 +
1 −tant
1 +tant)
dt=
∫ π 40ln2
1 +tant
dt=π
4
ln 2−I.Solving forI, we obtainI=π 8 ln 2.
459.With the substitution arctanx=tthe integral takes the form
I=
∫ π 40ln( 1 +tant)dt.