536 Real Analysis
455.Denote the value of the integral byI. With the substitutiont=abx we have
I=
∫b
a
e
bt
−e
ta
ab
t
·
−ab
t^2
dt=−
∫b
a
e
ta
−e
bt
t
dt=−I.
HenceI=0.
456.The substitutiont= 1 −xyields
I=
∫ 1
0
√ (^32) ( 1 −t) (^3) − 3 ( 1 −t) (^2) −( 1 −t)+ 1 dt=−
∫ 1
0
√ (^32) t (^3) − 3 t (^2) −t+ 1 dt=−I.
HenceI=0.
(Mathematical Reflections, proposed by T. Andreescu)
457.Using the substitutionsx=asint, respectively,x=acost, we find the integral to
be equal to both the integral
L 1 =
∫π/ 2
0
sint
sint+cost
dt
and the integral
L 2 =
∫π/ 2
0
cost
sint+cost
dt.
Hence the desired integral is equal to
1
2
(L 1 +L 2 )=
1
2
∫ π 2
0
1 dt=
π
4
.
458.Denote the integral byI. With the substitutiont=π 4 −xthe integral becomes
I=
∫ 0
π 4 ln
(
1 +tan
(π
4
−t
))
(− 1 )dt=
∫ π 4
0
ln
(
1 +
1 −tant
1 +tant
)
dt
=
∫ π 4
0
ln
2
1 +tant
dt=
π
4
ln 2−I.
Solving forI, we obtainI=π 8 ln 2.
459.With the substitution arctanx=tthe integral takes the form
I=
∫ π 4
0
ln( 1 +tant)dt.