26.1 The Statistical Thermodynamics of a Dilute Gas 1087
The Helmholtz Energy of a Dilute Gas
Using the formula for the entropy, we can obtain a formula for the Helmholtz energy:
AU−TSU−T
[
U
T
+NkB+NkBln
(z
N
)]
A−NkBTln
(z
N
)
−NkBT (26.1-22)
The Chemical Potential of a Dilute Gas
In statistical mechanics, it is customary to define the chemical potential as a derivative
with respect to the number of molecules, not with respect to the amount in moles:
μ
(
∂A
∂N
)
T,V
(26.1-23)
This chemical potential is equal to the thermodynamic chemical potential divided by
Avogadro’s constant. The number of molecules is an integer, so we use a quotient of
finite differences to approximate the derivative in Eq. (26.1-23):
μ
AN−AN− 1
1
AN−AN− 1 (26.1-24)
where the subscripts indicate the number of molecules in the system.
μ−NkBTln(z/N)−NkBT−
[
−(N−1)kBTln
(
z
N− 1
)
−(N−1)kBT
]
−NkBTln(z)+NkBTln(N)−NkBT+(N−1)kBTln(z)
−(N−1)kBTln(N−1)+NkBT−kBT
−kBTln(z)+NkBTln
(
N
N− 1
)
+kBTln(N−1)−kBT (26.1-25)
SinceNis a large number, the second term of the right-hand side of the final version
of this equation can be approximated:
NkBTln
(
N
N− 1
)
−NkBTln
(
N− 1
N
)
−NkBTln
(
1 −
1
N
)
≈−NkBT
(
−
1
N
)
kBT (26.1-26)
Two terms cancel. SinceNis a large number (near 10^24 in most systems), ln(N−1)
can be replaced by ln(N) without serious error, so that
μ−kBTln
(z
N