Cambridge Additional Mathematics

(singke) #1
Polynomials (Chapter 6) 161

DIVISION BY QUADRATICS


As with division by linears, we can use thedivision algorithmto divide polynomials by quadratics. The
division process stops when the remainder has degree less than that of the divisor, so

If P(x) is divided by ax^2 +bx+c then
P(x)
ax^2 +bx+c

=Q(x)+

ex+f
ax^2 +bx+c

where ax^2 +bx+c is thedivisor,
Q(x) is thequotient,
and ex+f is theremainder.

The remainder will be linear if e 6 =0, and constant if e=0.

Example 6 Self Tutor


Find the quotient and remainder for
x^4 +4x^3 ¡x+1
x^2 ¡x+1
.

Hence write x^4 +4x^3 ¡x+1 in the form Q(x)£(x^2 ¡x+1)+R(x).

x^2 +5x+4
x^2 ¡x+1 x^4 +4x^3 +0x^2 ¡ x+1
¡(x^4 ¡ x^3 + x^2 )
5 x^3 ¡ x^2 ¡ x
¡( 5 x^3 ¡ 5 x^2 +5x)
4 x^2 ¡ 6 x+1
¡( 4 x^2 ¡ 4 x+4)
¡ 2 x¡ 3

The quotient is x^2 +5x+4
and the remainder is ¡ 2 x¡ 3.
) x^4 +4x^3 ¡x+1
=(x^2 +5x+ 4)(x^2 ¡x+1)¡ 2 x¡ 3

EXERCISE 6A.3


1 Find the quotient and remainder for:

a
x^3 +2x^2 +x¡ 3
x^2 +x+1
b
3 x^2 ¡x
x^2 ¡ 1
c
3 x^3 +x¡ 1
x^2 +1
d
x¡ 4
x^2 +2x¡ 1

2 Carry out the following divisions and also write each in the form P(x)=Q(x)D(x)+R(x):

a
x^2 ¡x+1
x^2 +x+1
b
x^3
x^2 +2
c
x^4 +3x^2 +x¡ 1
x^2 ¡x+1

d
2 x^3 ¡x+6
(x¡1)^2
e
x^4
(x+1)^2
f
x^4 ¡ 2 x^3 +x+5
(x¡1)(x+2)

3 Suppose P(x)=(x¡2)(x^2 +2x+3)+7. Find the quotient and remainder when P(x)is divided
by x¡ 2.

4 Suppose f(x)=(x¡1)(x+ 2)(x^2 ¡ 3 x+5)+15¡ 10 x. Find the quotient and remainder when
f(x) is divided by x^2 +x¡ 2.

4037 Cambridge
cyan magenta yellow black Additional Mathematics

(^05255075950525507595)
100 100
(^05255075950525507595)
100 100
Y:\HAESE\CAM4037\CamAdd_06\161CamAdd_06.cdr Thursday, 3 April 2014 5:18:29 PM BRIAN

Free download pdf