Cambridge Additional Mathematics

(singke) #1
164 Polynomials (Chapter 6)

Example 10 Self Tutor


Findallquartic polynomials with zeros 2 , ¡^13 , and ¡ 1 §

p
5.

The zeros ¡ 1 §

p
5 have sum=¡1+

p
5 ¡ 1 ¡

p
5=¡ 2 and
product=(¡1+

p
5)(¡ 1 ¡

p
5) =¡ 4

) they come from the quadratic factor x^2 +2x¡ 4.

The zeros 2 and¡^13 come from the linear factors x¡ 2 and 3 x+1.

) P(x)=a(x¡2)(3x+ 1)(x^2 +2x¡4), a 6 =0.

6 Findallquartic polynomials with zeros of:
a § 1 , §

p
2 b 2 , ¡^15 , §

p
3 c ¡ 3 ,^14 , 1 §

p
2 d 2 §

p
5 , ¡ 2 §

p
7

POLYNOMIAL EQUALITY


Two polynomials areequalif and only if they have thesame degree(order), and corresponding terms
have equal coefficients.

If we know that two polynomials areequalthen we canequate coefficientsto find unknown coefficients.

For example, if 2 x^3 +3x^2 ¡ 4 x+6=ax^3 +bx^2 +cx+d, where a,b,c,d 2 R, then
a=2, b=3, c=¡ 4 , and d=6.

Example 11 Self Tutor


Find constantsa,b, andcgiven that:
6 x^3 +7x^2 ¡ 19 x+7=(2x¡1)(ax^2 +bx+c) for allx.

6 x^3 +7x^2 ¡ 19 x+7=(2x¡1)(ax^2 +bx+c)
) 6 x^3 +7x^2 ¡ 19 x+7=2ax^3 +2bx^2 +2cx¡ax^2 ¡bx¡c
) 6 x^3 +7x^2 ¡ 19 x+7=2ax^3 +(2b¡a)x^2 +(2c¡b)x¡c

Since this is true for allx, we equate coefficients:
) 2 a=6
x^3 s

2 b¡a=7
x^2 s

2 c¡b=¡ 19
xs

and 7=¡c
constants
) a=3 and c=¡ 7 and consequently 2 b¡3=7 and ¡ 14 ¡b=¡ 19
) b=5
in both equations

So, a=3, b=5, and c=¡ 7.

cyan magenta yellow black

(^05255075950525507595)
100 100
(^05255075950525507595)
100 100 4037 Cambridge
Additional Mathematics
Y:\HAESE\CAM4037\CamAdd_06\164CamAdd_06.cdr Friday, 20 December 2013 12:59:47 PM BRIAN

Free download pdf