414 Integration (Chapter 15)Historical note
#endboxedheading
The wordintegrationmeans “to put together into a whole”. Anintegralis the “whole” produced from
integration, since the areas f(xi)£w of the thin rectangular strips are put together into one whole
area.
The symbolZ
is called anintegral sign. In the time ofNewtonandLeibnizit was the stretched outletter s, but it is no longer part of the alphabet.Example 1 Self Tutor
a Sketch the graph of y=x^4 for 06 x 61. Shade the area described byZ 10x^4 dx.b Use technology to calculate the lower and upper rectangle sums fornequal subintervals where
n=5, 10 , 50 , 100 , and 500.c Hence findZ 10x^4 dx to 2 significant figures.abn AL AU
5 0 : 1133 0 : 3133
10 0 : 1533 0 : 2533
50 0 : 1901 0 : 2101
100 0 : 1950 0 : 2050
500 0 : 1990 0 : 2010c When n= 500, AL¼AU¼ 0 : 20 ,to 2 significant figures.) since AL<Z 10x^4 dx < AU,Z 10x^4 dx¼ 0 : 20EXERCISE 15A.2
1aSketch the graph of y=p
x for 06 x 61.Shade the area described byZ 10p
xdx.b Find the lower and upper rectangle sums for n=5, 10 , 50 , 100 , and 500.c Hence findZ 10p
xdxto 2 significant figures.2 Consider the region enclosed by y=p
1+x^3 and thex-axis for 06 x 62.
a Write expressions for the lower and upper rectangle sums usingnsubintervals,
n 2 N.
b Find the lower and upper rectangle sums for n=50, 100 , and 500.c Hence estimateZ 20p
1+x^3 dx.GRAPHING
PACKAGEAREA
FINDER02. 04. 06. 08. 11
08.
06.
04.
02.
xyy=x¡¡¡^4A=Z 10x^4 dxOcyan magenta yellow black(^05255075950525507595)
100 100
(^05255075950525507595)
100 100 4037 Cambridge
Additional Mathematics
Y:\HAESE\CAM4037\CamAdd_15\414CamAdd_15.cdr Monday, 7 April 2014 3:57:46 PM BRIAN