Data Mining: Practical Machine Learning Tools and Techniques, Second Edition

(Brent) #1
Cypher, A., editor. 1993. Watch what I do: Programming by demonstration.
Cambridge, MA: MIT Press.
Dasgupta, S. 2002. Performance guarantees for hierarchical clustering. In J. Kivinen
and R. H. Sloan, editors,Proceedings of the Fifteenth Annual Conference on
Computational Learning Theory, Sydney, Australia. Berlin: Springer-Verlag, pp.
351–363.
Datta, S., H. Kargupta, and K. Sivakumar. 2003. Homeland defense, privacy-sensi-
tive data mining, and random value distortion. In Proceedings of the Workshop
on Data Mining for Counter Terrorism and Security, San Francisco. Society for
International and Applied Mathematics, Philadelphia, PA.
Demiroz, G., and A. Guvenir. 1997. Classification by voting feature intervals. In M.
van Someren and G. Widmer, editors,Proceedings of the Ninth European
Conference on Machine Learning, Prague, Czech Republic. Berlin: Springer-
Verlag, pp. 85–92.
Devroye, L., L. Györfi, and G. Lugosi. 1996.A probabilistic theory of pattern recog-
nition.New York: Springer-Verlag.
Dhar, V., and R. Stein. 1997.Seven methods for transforming corporate data into busi-
ness intelligence.Upper Saddle River, NJ: Prentice Hall.
Diederich, J., J. Kindermann, E. Leopold, and G. Paass. 2003. Authorship attribu-
tion with support vector machines.Applied Intelligence19(1):109–123.
Dietterich, T. G. 2000. An experimental comparison of three methods for con-
structing ensembles of decision trees: Bagging, boosting, and randomization.
Machine Learning40(2):139–158.
Dietterich, T. G., and G. Bakiri. 1995. Solving multiclass learning problems via error-
correcting output codes.Journal Artificial Intelligence Research2:263–286.
Domingos, P. 1997. Knowledge acquisition from examples via multiple models. In
D. H. Fisher Jr., editor,Proceedings of the Fourteenth International Conference
on Machine Learning, Nashville, TN. San Francisco: Morgan Kaufmann, pp.
98–106.
———. 1999. MetaCost: A general method for making classifiers cost sensitive. In
U. M. Fayyad, S. Chaudhuri, and D. Madigan, editors,Proceedings of the Fifth
International Conference on Knowledge Discovery and Data Mining, San Diego,
CA. New York: ACM, pp. 155–164.
Dougherty, J., R. Kohavi, and M. Sahami. 1995. Supervised and unsupervised dis-
cretization of continuous features. In A. Prieditis and S. Russell, editors,
Proceedings of the Twelfth International Conference on Machine Learning, Tahoe
City, CA. San Francisco: Morgan Kaufmann, pp. 194–202.

REFERENCES 489


P088407-REF.qxd 4/30/05 11:24 AM Page 489

Free download pdf