Cambridge International Mathematics
Straight lines (Chapter 14) 309 Example 10 Self Tutor ABC is an isosceles triangle with AB=AC. A(0,¡1),B( 5 , 1 ) and C(2,k) are ...
310 Straight lines (Chapter 14) 4 Plot the points O( 0 , 0 ), A(1,4),B(9,2) and C(8,¡2). a Prove that line segments OA and BC ar ...
Straight lines (Chapter 14) 311 5 Find the equation of a line with gradient^23 which passes through (¡ 3 ,4). 6 Use axes interce ...
312 Straight lines (Chapter 14) 5 Find the equation connecting the variables for the graph given. 6 Find the axes intercepts for ...
15 Contents: A Labelling sides of a right angled triangle [8.1] B The trigonometric ratios [8.1] C Problem solving [8.1] D [8.2] ...
314 Trigonometry (Chapter 15) For the right angled triangle with angleμ: ² thehypotenuse (HYP)is the longest side ² theopposite ...
Trigonometry (Chapter 15) 315 EXERCISE 15A 1 For the triangles given, name: i the hypotenuse ii the side opposite angleμ iii the ...
316 Trigonometry (Chapter 15) Triangle AB BC AC AB AC BC AC BC AB 1 2 3 4 Convert all fractions to 2 decimal places. 2 Repeat 1 ...
Trigonometry (Chapter 15) 317 FINDING TRIGONOMETRIC RATIOS Example 3 Self Tutor For the given triangle find sinμ,cosμandtanμ: si ...
318 Trigonometry (Chapter 15) EXERCISE 15B.1 1 For each of the following triangles find: i sinμ ii cosμ iii tanμ iv sinÁ v cosÁ ...
Trigonometry (Chapter 15) 319 de f gh i jk l 4 Findallthe unknown angles and sides of: abc FINDING ANGLES In the right angled tr ...
320 Trigonometry (Chapter 15) a tanμ=^47 ftanμ= OPP ADJ g ) μ= tan¡^1 ¡ 4 7 ¢ ) μ¼ 29 : 7 o fSHIFT tan ( 4 ¥ 7 ) EXEg So, the an ...
Trigonometry (Chapter 15) 321 4 Find the unknowns correct to 3 significant figures: abc de f gh i 5 Findμusing trigonometry in t ...
322 Trigonometry (Chapter 15) 1 User= 6378km and BCMb =89oto estimate the distance from the centre of the earth C to the moon. 2 ...
Trigonometry (Chapter 15) 323 ANGLES OF ELEVATION AND DEPRESSION The angle between the horizontal and your line of sight is call ...
324 Trigonometry (Chapter 15) a sinμ= OPP HYP = 3 : 5 4 : 1 ) μ= sin¡^1 μ 3 : 5 4 : 1 ¶ ) μ¼ 58 : 6 o fSHIFT sin ( 3 : 5 ¥ 4 : 1 ...
Trigonometry (Chapter 15) 325 6 From a vertical cliff 80 m above sea level, a fishing boat is observed at an angle of depression ...
326 Trigonometry (Chapter 15) 17 For the circle given, find: a b the distance between A and B. 18 An aeroplane takes off from th ...
Trigonometry (Chapter 15) 327 27 In the triangle alongside, P is 5 m from each of the vertices. Find the length of each side of ...
328 Trigonometry (Chapter 15) 2 Point A has coordinates(0: 2588 , 0 :9659). Without finding the size ofμ, state: a cosμ b sinμ c ...
«
14
15
16
17
18
19
20
21
22
23
»
Free download pdf