342 Algebraic fractions (Chapter 16)FACTORISATION AND SIMPLIFICATION
It is often necessary to factorise either the numerator or denominator before simplification can be done.Example 3 Self Tutor
Simplify: a4 a+8
4b3
3 a¡ 6 ba4 a+8
4=
4(a+2)
4=
(a+2)
1
=a+2b3
3 a¡ 6 b=3
3(a¡ 2 b)=1
a¡ 2 bExample 4 Self Tutor
Simplify: aab¡ac
b¡c
b2 x^2 ¡ 4 x
4 x¡ 8a
ab¡ac
b¡c=
a(b¡c)
b¡c
=a
1
=ab
2 x^2 ¡ 4 x
4 x¡ 8=
2 x(x¡2)
4(x¡2)=x
2It is sometimes useful to use the property: b¡a=¡1(a¡b)Example 5 Self Tutor
Simplify: a3 a¡ 3 b
b¡abab^2 ¡ab
1 ¡ba3 a¡ 3 b
b¡a=
3(a¡b)
¡1(a¡b)
=¡ 3bab^2 ¡ab
1 ¡b=
ab(b¡1)
¡1(b¡1)
=¡ab11111
11
11
11
112IGCSE01
cyan magenta yellow black(^05255075950525507595)
100 100
(^05255075950525507595)
100 100
y:\HAESE\IGCSE01\IG01_16\342IGCSE01_16.CDR Thursday, 2 October 2008 2:15:32 PM PETER