Algebraic fractions (Chapter 16) 349Example 13 Self Tutor
Write as a single fraction: a2
x+
1
x+2b5
x+2¡
1
x¡ 1a2
x+
1
x+2=2
xμ
x+2
x+2¶
+μ
1
x+2¶
x
xfLCD=x(x+2)g=2(x+2)+x
x(x+2)=2 x+4+x
x(x+2)=3 x+4
x(x+2)b5
x+2¡
1
x¡ 1=μ
5
x+2¶μ
x¡ 1
x¡ 1¶
¡μ
1
x¡ 1¶μ
x+2
x+2¶fLCD=(x+ 2)(x¡1)g=5(x¡1)¡1(x+2)
(x+ 2)(x¡1)=5 x¡ 5 ¡x¡ 2
(x+ 2)(x¡1)=4 x¡ 7
(x+ 2)(x¡1)Example 14 Self Tutor
Simplify:a
x^2 +2x
x^2 +3x+2£
x+1
2 x^2b
x^2 ¡ 3 x¡ 4
x^2 +x¥
x^2 ¡x¡ 12
x^2 ¡xax^2 +2x
x^2 +3x+2£
x+1
2 x^2=
x(x+2)
(x+ 1)(x+2)£
(x+1)
2 x^2=1
2 xbx^2 ¡ 3 x¡ 4
x^2 +x¥
x^2 ¡x¡ 12
x^2 ¡x=x^2 ¡ 3 x¡ 4
x^2 +x£
x^2 ¡x
x^2 ¡x¡ 12freciprocatingg=
(x¡4)(x+1)
x(x+1)£
x(x¡1)
(x¡4)(x+3)ffactorisingg=
x¡ 1
x+3fon cancellinggEXERCISE 16D.1
1 Write as a single fraction:ax
4+
x¡ 1
5b2 x+5
3+
x
6cx
7+
2 x¡ 1
6da+b
2+
b¡a
3ex¡ 1
4+
2 x¡ 1
5fx+1
2+
2 ¡x
7gx
5¡
x¡ 3
6hx¡ 1
6¡
x
7ix
10¡
2 x¡ 1
5jx
6¡
1 ¡x
12kx¡ 1
3¡
x¡ 2
5l2 x+1
3¡
1 ¡ 3 x
811 1 1(^1111)
111
IGCSE01
cyan magenta yellow black
(^05255075950525507595)
100 100
(^05255075950525507595)
100 100
y:\HAESE\IGCSE01\IG01_16\349IGCSE01_16.CDR Thursday, 2 October 2008 2:05:40 PM PETER