The Chemistry Maths Book, Second Edition

(Grace) #1

144 Chapter 5Integration


Following Leibniz, this limit is written as


(5.33)


and is called the definite integral of the functionf(x)fromx 1 = 1 atox 1 = 1 b.


This taking of the limit of the sum of small quantities is the characteristic feature


of the integral calculus, just as taking the limit of the ratio of two small quantities is


characteristic of the differential calculus. The essential discovery, made independently


by Leibniz and by Newton, was that ifF(x)is a function whose derivative isf(x) 1 = 1 F′(x)


then


(5.34)


This synthesis of the integral and differential calculus is called the fundamental


theorem of the calculus. The definite integral as defined in this section is known as


the Riemann integral.


3

In calculating the area enclosed by a curve it is neither essential nor always


convenient that the area be divided into linear strips in the way described above. We


illustrate this point in Example 5.11 with two different ways of calculating the area of


a circle.


EXAMPLE 5.11The area of a circle


The equation of the circle of radius aand centre at the origin of coordinates is


x


2

1 + 1 y


2

1 = 1 a


2

.


Method 1.Let Abe the area of that quarter of the circle that lies in the first quadrant,


in which both xand yare positive (Figure 5.12). Then


Divide the area into nvertical strips as described in


the derivation of equation (5.33) above. An approxi-


mate value of the area of the strip between xand


x 1 + 1 ∆xis and, by equation


(5.33), the total area is


Aaxdx


a

=−Z


0

22

∆∆Ayx a x≈=−∆x


22

yax=− ≤≤.xa


22

for 0


ZZ


a

b

a

b

f x dx() = F x dx F b F a′() =−() ()


Z


a

b

r

n

r r

fxdx fx x


n


( ) = lim ( )



=



1


x


y


.............................................................................................................................................................................................................................................................

..

...

..

...

..

...

..

...

..

...

..

...

..

...

..

...

..

...

..

...

..

...

..

...

..

...

..

...

..

...

..

...

..

...

..

...

..

...

..

...

..

...

..

...

..

...

..

...

..

...

..

...

..

...

..

...

..

...

..

...

..

...

..

...

..

...

..

...

..

...

..

...

..

...

..

...

..

...

..

...

..

...

..

...

..

...

..

...

..

...

..

...

..

...

..

...

..

...

..

...

..

.

.

..

...

...

..

...

..

...

..
...
..
...
..
...
...
..
.

.....
......
.......
........
......
......
..

.

...

..

...

..

...

..

...

..

...

..

...

..

...

..

...

..

...

..

...

..

...

..

...

..

...

..

...

..

...

..

...

..

...

..

...

..

...

..

...

..

...

..

...

..

...

..

...

..

...

..

...

..

...

..

...

..

...

..

...

..

...

..

...

..

...

..

.

...

..

...

..

...

..

...

..

...

..

...

..

...

..

...

..

...

..

...

..

...

..

...

..

...

..

...

..

...

..

...

..

...

..

...

..

...

..

...

..

...

..

...

..

...

..

...

..

...

..

...

..

...

..

...

..

...

.

a


0 x x+∆ x a


.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.....

......

....

.....

......

.....

....

......

.....

.....

.....

.....

.....

.....

.....

.....

......

.....

.....

.....

.....

.....

......

.....

.....

......

.....

......

......

.....

.....

......

......

.....

......

......

.....

.......

.....

......

.......

......

......

......

.......

......

.......

......

.......

.......

.......

.......

........

.......

........

........

........

........

..........

........

.........

...........

.........

...........

............

............

.............

................

................

...................

.............................

.....................................................

Figure 5.12


3

Georg Friedrich Bernhard Riemann (1826–1866), professor of mathematics at Göttingen, made contributions


to the theory of numbers, functions of a complex variable, and differential equations. In his 1854 lecture Über die


hypothesen welche der geometrie zu grunde liegen(On the hypotheses that lie at the foundations of geometry)


Riemann developed a system of non-Euclidean geometry and initiated the study of curved metric spaces that


ultimately formed the basis for the mathematics of the general theory of relativity.

Free download pdf