168 Chapter 6Methods of integration
EXAMPLE 6.4Integrate.
Letu 1 = 12 x
2
1 + 13 x 1 + 11. Thendu 1 = 1 (4x 1 + 1 3)dx,and
0 Exercises 15, 16
There are no all-embracing rules for finding the correct change of variable that will
transform an integral to standard form; proficiency in the art of integration is the
result of a lot of practice. Some of the simpler types of substitution are summarized in
Table 6.2.
Table 6.2
Type Substitution Result
- u 1 = 1 f(x), du 1 = 1 f′(x) 1 dx
- u 1 = 1 f(x), du 1 = 1 f′(x) 1 dx
- u 1 = 1 sin 1 x, du 1 = 1 cos 1 x 1 dx
- u 1 = 1 cos 1 x, du 1 = 1 −sin 1 x 1 dx
EXAMPLES 6.5Integrals of type 1 :.
(i).
In this case,cos 1 axis proportional to the derivative ofsin 1 ax(and vice versa);
f(x) 1 = 1 sin 1 ax, f′(x) 1 = 1 a 1 cos 1 ax
Therefore, puttingu 1 = 1 sin 1 ax, du 1 = 1 a 1 cos 1 ax 1 dx,
We note that this integral is identical to case 3 in Table 6.1, and this example
demonstrates that there are often several ways of evaluating a particular integral.
I
a
udu
a
uC
a
==+= +ax C
11
2
1
2
22
Z sin
Iaxaxd=Zsin cos x
Zfxf xdx() ()′
Zfxxdx()cos sin −Zfudu()
Zfudu()
Zfx xdx()sin cos
Z
du
u
Z =+lnuC
fx′
fx
dx
()
()
Zudu u C=+
1
2
2
Zfxf xdx() ()′
ZZexdxedueCe
−++xx −u −u −x
+= =−+=−
() (
()
231 2
2 2
43
+++
31 x
C
)
Zexdx
−++xx
()
()
231
2
43