The Chemistry Maths Book, Second Edition

(Grace) #1

6.3 The method of substitution 167


and, substituting in (6.7),


(6.9)


The essential skill in applying the method of substitution is the ability to recognize


when an integrand can be written in the form (6.8). The transformation of the integral


is then achieved by the substitution


u 1 = 1 u(x), (6.10)


or, alternatively,x 1 = 1 x(u),


EXAMPLE 6.2Show that


where the numbers a,b, and nare arbitrary, except thatn 1 ≠ 1 − 1.


Letu 1 = 1 ax 1 + 1 b. Thendu 1 = 1 a 1 dx,and


0 Exercises 11, 12


EXAMPLE 6.3Integrate.


Because we make the substitution u 1 = 1 x 1 + 1 x


2

. Then


du 1 = 1 (1 1 + 12 x) 1 dxand


Therefore


The result is confirmed by differentiation:


0 Exercises 13, 14


d


dx


21 xx C xx 2 x


212 2 12

() ()()++








=+ +



ZZ()()xx++= =+=+xdx u du u C xx()


212 −− 12 12 212

12 2 2 ++C


fx x x x u


du


dx


() ( ) ( )=+ + =


212 −− 12

12


()(),12


2

+= +x


d


dx


xx


ZZfxdx x x() =+( ) ( )+xdx


212 −

12


ZZ()


()


(


ax b dx


a


udu


a


u


n


C


ax b


an


nn

nn

+= =






+=






++

11


1


11

++










C


Z()


()


ax b dx ()


an


ax b C


nn

+=






++


+

1


1


1

dx


dx


du


= du.


du


du


dx


= dx


ZZ Zfxdx gu


du


dx


() ==() dx g u du()

Free download pdf