The Chemistry Maths Book, Second Edition

(Grace) #1

6.6 Rational integrands. The method of partial fractions 181


Ifu 1 = 1 f(x) 1 = 1 x


2

1 + 1 px 1 + 1 qthendu 1 = 1 f′(x) 1 dx 1 = 1 (2x 1 + 1 p) 1 dx,and


(6.22)


Therefore,


(6.23)


0 Exercises 66, 67


The numerator is unity:


The integral is evaluated by first transforming the quadratic in the denominator into


the formu


2

1 + 1 a


2

. We write


(6.24)


wherep


2

1 − 14 qis the discriminant of the quadratic. Because it has been assumed that


the quadratic has no real roots, the discriminant is negative, but 4 q 1 − 1 p


2

is positive:


(6.25)


whereu 1 = 1 x 1 + 1 p 22 anda


2

1 = 1 (4q 1 − 1 p


2

) 241 > 10. Then, becausedx 1 = 1 du,


We now use the trigonometric substitution u 1 = 1 a 1 tan 1 θ. Then du 1 = 1 a 1 sec


2

1 θ 1 dθ 1 =


(a 2 cos


2

1 θ) 1 dθ,andu


2

1 + 1 a


2

1 = 1 a


2

(tan


2

1 θ 1 + 1 1) 1 = 1 a


2

2 cos


2

1 θ. Therefore


(6.26)


Whenn 1 = 11 ,


(6.27)


which is one of the standard integrals in Table 6.3. Whenn 1 > 11 , the integral (6.26) can


be evaluated, for example, by reduction as in Example 6.14.


ZZ


du


ua


a


d


a


C


a


u


a


C


22

1

11






==+=







+



θ


θ


tan


ZZ


du


ua a


d


nn

n

()


cos


22 21

22

1






=




θθ


ZZ


dx


xpxq


du


ua


nn

()()


222

++


=






xpxqx


pqp


ua


2

2

2

22

2


4


4


++=+





















=+


xpxqx


ppq


2

2

2

2


4


4


++=+







 −











Z


dx


xpxq


n

()


2

++


Z


2


1


1


1


2

2

xp


xpxq


dx


xpxqC n


n


n





++


=


+++ =




()


ln( )


()


if


(()xpxq


Cn


21 n

1


++


+>










if


ZZ


2


1


1


1


2

xp


xpxq


dx


du


u


uC n


nu


nn





++


==


+=




()


()


ln if


nn

Cn



+>









1

if 1

Free download pdf