The Chemistry Maths Book, Second Edition

(Grace) #1

230 Chapter 8Complex numbers


EXAMPLES 8.5Expressz 1 = 1 x 1 + 1 iyin polar form.


(i) z 1 = 111 + 1 i


We havex 1 = 11 andy 1 = 11 so that


The principal value oftan


− 1

(1) isπ 24 , andarg 1 z 1 = 1 π 24 because the point lies in


the first quadrant. Therefore


(ii)


We havex 1 = 1 − 122 and so that


The principal value of tan is π 23 and, because x 1 < 10 , it follows that


arg 1 z 1 = 1 tan. Therefore


0 Exercises 16–22


Representation of arithmetic operations


Addition and subtraction


In Figure 8.4, the numbersz


1

1 = 1 x


1

1 + 1 iy


1

andz


2

1 = 1 x


2

1 + 1 iy


2

are represented by points P


and Q, respectively. The representation of the sum


z


1

1 + 1 z


2

1 = 1 (x


1

1 + 1 x


2

) 1 + 1 i(y


1

1 + 1 y


2

)


zi=+cos sin


4


3


4


3


ππ



()


+=


1

343 ππ



()


1

3


tan tan ( )


−−







=


11

3


y


x


r=




















=


2

2

1


2


3


2


1


y=− 32


zi=− −


1


2


3


2


zi=+








2


44


cos sin


ππ


rz x y


y


x


== +=,








=


−−

|| tan tan()


22 1 1

21


.

...

..

...

..

..

...

...

..

...

..

..

...

...

..

...

..

..

...

..

...

...

..

..

...

..

...

...

..

..

...

..

...

...

..

..

...

..

...

..

...

..

...

..

...

..

...

..

...

..

...

..

...

..

...

..

...

..

...

..

...

..

...

..

.

z= 1 +i


θ


x


y


r






o


..

...

..

..
...
..
...
...
..
...
...
..

.
...
..
...
...
..
...
...
..

...........
.......
.......
.....

......

........

.......

.

..

...

..

...

...

..

...

...

...

...

..

.....

.......

.......

.......

.......

.......

........

.......

......

........

.......

.......

.......

.......

.......

........

......

.......

........

.......

.......

.......

.......

.......

........

......

.......

........

.......

......

........

.......

.......

.......

.......

.......

........

......

.......

........

.......

.......

.......

.......

.......

........

...

.

...

..

...

..

...

..

...

..

...

..

...

..

...

..

...

..

...

..

...

..

...

..

...

..

...

..

...

..

...

..

...

..

...

..

...

..

...

...

..

..

...

..

...

...

..

..

...

..

...

...

..

..

...

...

..

...

..

..

...

...

..

...

..

..

...

...

..

...

..

..

...

...

..

.

(



1


2


,−



3


2


)


θ


x


y


r






o


...

..

..
...
..
...
...
..
...
...
..

.
...
..
...
...
..
...
...
..

............
.......
.......
..

....

.......

.......

....

..

..

..

...

...

..

....

...

...

.....

......

................
......
.....
...
...
....
..
...
...
..
...
..
...
..
...
...
..
....
...
....
...

.....

......

.....

......

......

.....

.......

.....

......

......

......

.....

......

......

.....

.......

.....

......

......

.....

......

......

......

.....

.......

.....

......

......

.....

......

......

......

.....

.......

.....

......

......

....

Figure 8.2


Figure 8.3

Free download pdf