The Chemistry Maths Book, Second Edition

(Grace) #1

8.5 Euler’s formula 239


de Moivre’s formula


When θin Euler’s formula, (8.33), is replaced by nθwhere nis an arbitrary number,


the result is


e


inθ

1 = 1 cos 1 nθ 1 + 1 i 1 sin 1 nθ


But becausee


inθ

1 = 1 (e



)


n

, it follows that


(e



)


n

1 = 1 (cos 1 θ 1 + 1 i 1 sin 1 θ)


n

1 = 1 cos 1 nθ 1 + 1 i 1 sin 1 nθ (8.40)


This is de Moivre’s formula, (8.27), generalized for arbitrary numbers n(that can


themselves be complex).


EXAMPLE 8.12The square root of i:


We havei 1 = 1 e


iπ 22

. Therefore


Check:


0 Exercise 43


Rotation operators


When a complex numberz 1 = 1 re



is multiplied bye



the product is a number with


the same modulus as zbut with argument increased by θ:


e



z 1 = 1 e



re



1 = 1 re


i(α+θ)

Graphically, as shown in Figure 8.7, the multiplication corresponds to the (anti-


clockwise) rotation of the representative point through angle θabout the origin of the


complex plane, from


z 1 = 1 x 1 + 1 iy 1 = 1 r 1 cos 1 α 1 + 1 ir 1 sin 1 α


with cartesian coordinatesx 1 = 1 r 1 cos 1 α 1 ,y 1 = 1 r 1 sin 1 αto


e



z 1 = 1 z′ 1 = 1 x′ 1 + 1 iy′ 1 = 1 r 1 cos(α 1 + 1 θ) 1 + 1 ir 1 sin(α 1 + 1 θ)


with coordinates


x′ 1 = 1 r 1 cos(α 1 + 1 θ) 1 = 1 r(cos 1 α 1 cos 1 θ 1 − 1 sin 1 α 1 sin 1 θ)


y′ 1 = 1 r 1 sin(α 1 + 1 θ) 1 = 1 r(sin 1 α 1 cos 1 θ 1 + 1 cos 1 α 1 sin 1 θ)


±+








()


=++=


1

2

2

1

2

2

112 iiii()


ie i i


i

=± =± +








=± +








π

ππ


4
1

2

cos 44 1sin


..........
...............
........
......
......
.....
....
.....
....
....
....
...
...
....
...
...
...
...
...
...
..
...
...
...
..
...
...
..
...
..
...
...
..
..
...
..
...
...
..
..
...
...
..
...
..
...
...
..
...
...
..
...
...
...
..
...
...
...
....
...
...
....
...
....
....
....
....
......
.....
.....
........
..........
.....................................

.........

........

......

.....

.....

.....

....

....

...

....

....

...

...

...

...

...

...

...

...

...

..

...

...

...

..

...

..

...

...

..

..

...

...

..

...

..

...

..

...

..

...

..

...

...

..

...

..

...

...

..

...

...

...

...

...

...

...

...

...

....

...

....

....

....

....

.....

.....

......

......

........

...............

.........

..

...

...

..

..

...

.
...

...

..

....

...

...

.

α


θ •






z(x,y)


z



(x



,y



)


o


.

..

...

..

...

.....
........
.

..........

..............

................

..............

..............

................

..............

..............

................

..............

..............

................

.........

.....

......

.......

......

.......

.......

......

......

.......

.......

......

.......

......

......

.......

.......

......

.......

......

.......

.......

......

......

.......

......

.......

.......

......

Figure 8.7

Free download pdf