The Chemistry Maths Book, Second Edition

(Grace) #1

8.6 Periodicity 241


so that each is a cube root of the number 1:


z


0

1 = 1 e


0

1 = 11


We note thatz


1

andz


2

are a complex conjugate pair, withe


4

π
i 23

1 = 1 e


− 2

π
i 23

. Because


of the periodicity of the exponential, the three roots can be specified by any three


consecutive values of k; conveniently as


z


k

1 = 1 e


2

π
ki 23

, k 1 = 1 0, ± 1


such thatz


0

1 = 11 ,z


± 1

1 = 1 e


± 2

π
i 23

.


In general the n nth roots of the number 1 are


6

(8.44)


Thus when nis odd, the only real root is+ 1 (fork 1 = 10 ) and the rest occur as complex


conjugate pairs. When nis even, two of the roots are real,± 1 (fork 1 = 10 ,n 22 ). The n


representative points lie on the vertices of a regular n-sided polygon.


EXAMPLE 8.13The six sixth roots of 1.


The six roots are


z


k

1 = 1 e


2 πki 26

, k 1 = 1 0, ±1, ±2, 3


or z


0

1 = 1 e


0

1 = 11


z


3

1 = 1 e


πi

1 = 1 cos 1 π 1 + 1 i 1 sin 1 π 1 = 1 − 1


0 Exercises 45–47


ze i i


i

±

±

==± =−±


2

23

2


3


2


3


1


2


3


2


π

ππ


cos sin


ze i i


i

±

±

==± =±


1

3

33


1


2


3


2


π

ππ


cos sin


ze k


nn


k

ki n

==


,±,± , ,± −



2

012 12


01


π

for


... () if is odd


,, ± , , ± − ,







2212 ... ()nn nif is even

ze i i


i

2

43

4


3


4


3


1


2


3


2


== + =−−


π

ππ


cos sin


ze i i


i

1

23

2


3


2


3


1


2


3


2


== + =−+


π

ππ


cos sin


6

The nth roots of a complex number were discussed by de Moivre in a Philosophical Transactionspaper of 1739.


..........
...............
........
......
......
.....
....
.....
....
....
....
...
...
....
...
...
...
...
...
...
..
...
...
...
..
...
...
..
...
..
...
...
..
..
...
..
...
...
..
..
...
...
..
...
..
...
...
..
...
...
..
...
...
...
..
...
...
...
....
...
...
....
...
....
....
....
....
......
.....
.....
........
..........
.....................................

.........

........

......

.....

.....

.....

....

....

...

....

....

...

...

...

...

...

...

...

...

...

..

...

...

...

..

...

..

...

...

..

..

...

...

..

...

..

...

..

...

..

...

..

...

...

..

...

..

...

...

..

...

...

...

...

...

...

...

...

...

....

...

....

....

....

....

.....

.....

......

......

........

...............

.........

...

..

....

..

...

...

...

...

...

...

..

....

..

...

...

...

...

...

...

..

....

..

...

...

...

...

...

...

..

....

..

. ....................... .......................................................................
..
....
..
...
...
...
...
...
...
..
....
..
...
...
...
...
...
...
..
....
..
...
...
...
...
...
...
..
....
..
....
...
...
...
...
...
..
....
..
...
...
...
...
...
...
..
...
...
...
...
...
...
...
...
..
...
...
...
...
...
...
.................................................................................................


...

...

...

...

...

...

..

...

...

...

...

...

...

...

...

..

...

...

...

...

...

...

..

....

..

...

...

...

...

...

.

z


0

z
1

z
2

z


3

z



  • 2


z



  • 1














Figure 8.9

Free download pdf