448 Chapter 16Vectors
16.3 Components of vectors
The component of a vector in a given direction is the
length of its projection in that direction. In Figure
16.8 the component of aalong the direction OP is the
length
ON 1 = 1 |a| 1 cos 1 θ (16.5)
The concept of component is essential for the practical use of vectors for the solution
of physical problems in three dimensions.
We consider first the simpler case of vectors in a plane. Let the initial and terminal
points of ain the xy-plane be(x
1, y
1)and(x
2, y
2), as shown in Figure 16.9. The
(cartesian) component of the vector in the x-direction is a
x1 = 1 x
21 − 1 x
1, and the
component in the y-direction isa
y1 = 1 y
21 − 1 y
1. These two components are sufficient to
specify the vector uniquely. Thus the length of the vector is , and the
direction is given by the slopea
y2 a
x. We write the vector in terms of its cartesian
components as
a 1 = 1 (a
x, a
y) (16.6)
Also, if the xand ydirections are described by the unit vectors iand j, as in Figure
16.10, then can be expressed as the sum of the two vectors, in the
x-direction (a
xtimes the unit vector iin the x-direction) and in the y-direction,
a 1 = 1 a
xi 1 + 1 a
yj (16.7)
More generally, a vector in three dimensions (Figure 16.11) can be specified by its
components, a
x, a
yand a
z, in the three cartesian directions i, j, and k(kis the unit
vector in the z-direction).
We write
a 1 = 1 (a
x, a
y, a
z) 1 = 1 a
xi 1 + 1 a
yj 1 + 1 a
zk (16.8)
QP
=ayj
OQ
=axi
a=OP
||a=+aa
xy22θ
a
o np
...................................
...........
...........
............
...........
...........
............
...........
..........
.............
..........
...........
............
...........
...........
............
...........
...........
............
...........
..........
.............
..........
...........
............
...........
...........
............
...........
...........
............
...........
..........
.............
..........
...........
............
...........
...........
............
...........
...........
...............
......
.......
.......
......
.
.................................
Figure 16.8
...........
...
..
...
...
..
....
...
..
...
...
..
.................
.......
.......................a
a
x=x
2−x
1a
y=y
2−y
1x
y
o x
1x
2y
1y
2.........
............
...........
...........
............
...........
...........
............
...........
..........
.............
..........
...........
.............
..........
...........
............
...........
..........
......
.......
.......
......
...
..............................
...
......
............
...........
...........
............
..........
...........
............
...........
...........
............
..........
...........
............
...........
...........
............
...........
..........
...........
...
..
...
...
..
....
...
..
...
...
..
.................
.......
.......................o
q
p
a
a
xi
a
yj
x
y
i
j
...........
............
...........
..........
............
...........
...........
............
...........
..........
............
...........
...........
............
...........
...........
............
..........
..........
......
.......
.......
......
...
.............................
....
......
............
...........
...........
............
..........
...........
............
...........
...........
............
..........
...........
............
...........
...........
............
...........
..........
..........................................................................................................................................................................................
.............
...............
....
.............
...............
.....
..............................................................................................................................................................................................
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
......
.....
......
.....
.....
......
...
...
.....
......
.....
.....
......
...
...
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
...
.....
......
....
.....
......
....
.....
......
....
.....
......
....
.....
......
....
.....
.....
..........
......
.....
......
.....
.....
......
......
.....
.....
......
.....
...................................................................................................
...............
.....................
.............
............
Figure 16.9 Figure 16.10