THE RELATIONSHIP BETWEEN TRIGONOMETRIC AND HYPERBOLIC FUNCTIONS 175B
cosθ−cosφ=−2 sin
(
θ+φ
2)
sin(
θ−φ
2)(see Chapter 18, page 184)thus cosjA−cosjB=−2 sinj(
A+B
2)
sinj(
A−B
2)But from equation (5), cosjA=coshAand from equation (6), sinjA=jsinhAHence, coshA−coshB=− 2 jsinh(
A+B
2)
jsinh(
A−B
2)=− 2 j^2 sinh(
A+B
2)
sinh(
A−B
2)Butj^2 =−1, hencecoshA−coshB=2 sinh(
A+B
2)
sinh(
A−B
2)Problem 5. Develop the hyperbolic identity
corresponding to sin 3θ=3 sinθ−4 sin^3 θby
writingjAforθ.SubstitutingjAforθgives:sin 3jA=3 sinjA−4 sin^3 jAand since from equation (6),sinjA=jsinhA,jsinh 3A= 3 jsinhA− 4 j^3 sinh^3 ADividing throughout byjgives:sinh 3A=3 sinhA−j^2 4 sinh^3 ABut j^2 =−1, hencesinh 3A=3 sinhA+4 sinh^3 A[An examination of Problems 3 to 5 shows that
whenever the trigonometric identity contains a term
which is the product of two sines, or the implied
product of two sine (e.g. tan^2 θ=sin^2 θ/cos^2 θ, thus
tan^2 θis the implied product of two sines), the sign
of the corresponding term in the hyperbolic function
changes. This relationship between trigonometric
and hyperbolic functions is known as Osborne’s rule,
as discussed in Chapter 5, page 44].Now try the following exercise.Exercise 79 Further problems on hyper-
bolic identitiesIn Problems 1 to 9, use the substitutionA=jθ
(andB=jφ) to obtain the hyperbolic identities
corresponding to the trigonometric identities
given.- 1+tan^2 A=sec^2 A
[1−tanh^2 θ=sech^2 θ] - cos (A+[B)=cosAcosB−sinAsinB
cosh (θ+φ)
=coshθcoshφ+sinhθsinhφ
]- sin (A−B)=[sinAcosB−cosAsinB
sinh (θ+φ)=sinhθcoshφ
−coshθsinhφ
]- tan 2A=
2 tanA
1 −tan^2 A[tanh 2θ=2 tanhθ
1 +tanh^2 θ]- cosAsinB=
1
2[ sin (A+B)−sin (A−B)]
⎡⎣coshθcoshφ=1
2[sinh(θ+φ)−sinh(θ−φ)]⎤⎦- sin^3 A=
3
4sinA−1
4sin 3A
[
sinh^3 θ=1
4sinh 3θ−3
4sinhθ]- cot^2 A(sec^2 A−1)= 1
[coth^2 θ(1−sech^2 θ)=1]