Higher Engineering Mathematics

(Greg DeLong) #1

Geometry and trigonometry


18


Compound angles


18.1 Compound angle formulae


An electric currentimay be expressed as
i = 5 sin(ωt− 0 .33) amperes. Similarly, the dis-
placementx of a body from a fixed point can
be expressed asx=10 sin(2t+ 0 .67) metres. The
angles (ωt− 0 .33) and (2t+ 0 .67) are calledcom-
pound anglesbecause they are the sum or difference
of two angles. Thecompound angle formulaefor
sines and cosines of the sum and difference of two
anglesAandBare:
sin(A+B)=sinAcosB+cosAsinB
sin(A−B)=sinAcosB−cosAsinB
cos(A+B)=cosAcosB−sinAsinB
cos(A−B)=cosAcosB+sinAsinB
(Note, sin(A+B)isnotequal to (sinA+sinB), and
so on.)
The formulae stated above may be used to derive two
further compound angle formulae:

tan(A+B)=

tanA+tanB
1 −tanAtanB

tan(A−B)=

tanA−tanB
1 +tanAtanB
The compound-angle formulae are true for all values
ofAandB, and by substituting values ofAandBinto
the formulae they may be shown to be true.

Problem 1. Expand and simplify the following
expressions:
(a) sin(π+α) (b)−cos(90◦+β)
(c) sin(A−B)−sin(A+B)

(a) sin(π+α)=sinπcosα+cosπsinα(from
the formula for sin (A+B))
=(0)(cosα)+(−1) sinα=−sinα
(b)−cos (90◦+β)
=−[cos 90◦cosβ−sin 90◦sinβ]
=−[(0)(cosβ)−(1) sinβ]=sinβ

(c) sin(A−B)−sin(A+B)
=[sinAcosB−cosAsinB]
−[sinAcosB+cosAsinB]
=−2cos A sin B

Problem 2. Prove that

cos(y−π)+sin

(
y+

π
2

)
= 0.

cos (y−π)=cosycosπ+sinysinπ
=(cosy)(−1)+(siny)(0)
=−cosy

sin

(
y+

π
2

)
=sinycos

π
2

+cosysin

π
2
=(siny)(0)+(cosy)(1)=cosy

Hence cos(y−π)+sin

(
y+

π
2

)

=(−cosy)+(cosy)= 0

Problem 3. Show that

tan

(
x+

π
4

)
tan

(
x−

π
4

)
=− 1.

tan

(
x+

π
4

)
=

tanx+tanπ 4
1 −tanxtanπ 4

from the formula for tan(A+B)

=

tanx+ 1
1 −(tanx)(1)

=

(
1 +tanx
1 −tanx

)

since tan

π
4

= 1

tan

(
x−

π
4

)
=

tanx−tan

π
4
1 +tanxtan

π
4

=

(
tanx− 1
1 +tanx

)
Free download pdf