SCALAR AND VECTOR PRODUCTS 243D
Also, cosθ=a•b
ab.Multiplying both sides of this equation bya^2 b^2 and
squaring gives:a^2 b^2 cos^2 θ=a^2 b^2 (a•b)^2
a^2 b^2=(a•b)^2Substituting in equation (6) above fora^2 =a•a,
b^2 =b•banda^2 b^2 cos^2 θ=(a•b)^2 gives:(|a×b|)^2 =(a•a)(b•b)−(a•b)^2That is,|a×b|=√
[(a•a)(b•b)−(a•b)^2 ] (7)Problem 7. For the vectorsa=i+ 4 j− 2 kand
b= 2 i−j+ 3 kfind (i)a×band (ii)|a×b|.(i) From equation (5),a×b=∣
∣
∣
∣
∣ijk
a 1 a 2 a 3
b 1 b 2 b 3∣
∣
∣
∣
∣=i∣
∣
∣
∣a 2 a 3
b 2 b 3∣
∣
∣
∣−j∣
∣
∣
∣a 1 a 3
b 1 b 3∣
∣
∣
∣+k∣
∣
∣
∣a 1 a 2
b 1 b 2∣
∣
∣
∣Hencea×b=∣
∣
∣
∣
∣ijk
14 − 2
2 − 13∣
∣
∣
∣
∣=i∣
∣
∣
∣4 − 2
− 13∣
∣
∣
∣−j∣
∣
∣
∣1 − 2
23∣
∣
∣
∣+k∣
∣
∣
∣14
2 − 1∣
∣
∣
∣=i(12−2)−j(3+4)+k(− 1 −8)= 10 i− 7 j− 9 k(ii) From equation (7)
|a×b|=√
[(a•a)(b•b)−(a•b)^2 ]Now a•a=(1)(1)+(4×4)+(−2)(−2)= 21b•b=(2)(2)+(−1)(−1)+(3)(3)
= 14
and a•b=(1)(2)+(4)(−1)+(−2)(3)
=− 8Thus |a×b|=√
(21× 14 −64)=√
230 =15.17Problem 8. Ifp= 4 i+j− 2 k,q= 3 i− 2 j+k
andr=i− 2 kfind (a) (p− 2 q)×r
(b)p×(2r× 3 q).(a) (p− 2 q)×r=[4i+j− 2 k−2(3i− 2 j+k)]×(i− 2 k)=(− 2 i+ 5 j− 4 k)×(i− 2 k)=∣ ∣ ∣ ∣ ∣ ∣
ij k
− 25 − 4
10 − 2∣ ∣ ∣ ∣ ∣ ∣from equation (5)=i∣
∣
∣
∣5 − 4
0 − 2∣
∣
∣
∣−j∣
∣
∣
∣− 2 − 4
1 − 2∣
∣
∣
∣+k∣
∣
∣
∣− 25
10∣
∣
∣
∣=i(− 10 −0)−j(4+4)
+k(0−5), i.e.
(p− 2 q)×r=− 10 i− 8 j− 5 k(b) (2r× 3 q)=(2i− 4 k)×(9i− 6 j+ 3 k)=∣ ∣ ∣ ∣ ∣ ∣
ijk
20 − 4
9 − 63∣ ∣ ∣ ∣ ∣ ∣=i(0−24)−j(6+36)
+k(− 12 −0)
=− 24 i− 42 j− 12 kHencep×(2r× 3 q)=(4i+j− 2 k)
×(− 24 i− 42 j− 12 k)=∣ ∣ ∣ ∣ ∣ ∣
ijk
41 − 2
− 24 − 42 − 12∣ ∣ ∣ ∣ ∣ ∣