DIFFERENTIATION OF INVERSE TRIGONOMETRIC AND HYPERBOLIC FUNCTIONS 341
G
Problem 19. Determine
∫
dx
√
(x^2 +4)
Since
d
dx
(
sinh−^1
x
a
)
=
1
√
(x^2 +a^2 )
then
∫
dx
√
(x^2 +a^2 )
=sinh−^1
x
a
+c
Hence
∫
1
√
(x^2 +4)
dx =
∫
1
√
(x^2 + 22 )
dx
=sinh−^1
x
2
+c
Problem 20. Determine
∫
4
√
(x^2 −3)
dx.
Since
d
dx
(
cosh−^1
x
a
)
=
1
√
(x^2 −a^2 )
then
∫
1
√
(x^2 −a^2 )
dx=cosh−^1
x
a
+c
Hence
∫
4
√
(x^2 −3)
dx= 4
∫
1
√
[x^2 −(
√
3)^2 ]
dx
=4 cosh−^1
x
√
3
+c
Problem 21. Find
∫
2
(9− 4 x^2 )
dx.
Since tanh−^1
x
a
=
a
a^2 −x^2
then
∫
a
a^2 −x^2
dx=tanh−^1
x
a
+c
i.e.
∫
1
a^2 −x^2
dx=
1
a
tanh−^1
x
a
+c
Hence
∫
2
(9− 4 x^2 )
dx= 2
∫
1
4
( 9
4 −x
2
)dx
=
1
2
∫
1
[(
3
2
) 2
−x^2
]dx
=
1
2
[
1
( 3
2
)tanh−^1
x
( 3
2
)+c
]
i.e.
∫
2
(9− 4 x^2 )
dx=
1
3
tanh−^1
2 x
3
+c
Now try the following exercise.
Exercise 138 Further problems on differen-
tiation of inverse hyperbolic functions
In Problems 1 to 11, differentiate with respect to
the variable.
- (a) sinh−^1
x
3
(b) sinh−^14 x
[
(a)
1
√
(x^2 +9)
(b)
4
√
(16x^2 +1)
]
- (a) 2 cosh−^1
t
3
(b)
1
2
cosh−^12 θ
[
(a)
2
√
(t^2 −9)
(b)
1
√
(4θ^2 −1)
]
- (a) tanh−^1
2 x
5
(b) 3 tanh−^13 x
[
(a)
10
25 − 4 x^2
(b)
9
(1− 9 x^2 )
]
- (a) sech−^1
3 x
4
(b)−
1
2
sech−^12 x
[
(a)
− 4
x
√
(16− 9 x^2 )
(b)
1
2 x
√
(1− 4 x^2 )
]
- (a) cosech−^1
x
4
(b)
1
2
cosech−^14 x
[
(a)
− 4
x
√
(x^2 +16)
(b)
− 1
2 x
√
(16x^2 +1)
]
- (a) coth−^1
2 x
7
(b)
1
4
coth−^13 t
[
(a)
14
49 − 4 x^2
(b)
3
4(1− 9 t^2 )
]
- (a) 2 sinh−^1
√
(x^2 −1)
(b)
1
2
cosh−^1
√
(x^2 +1)
[
(a)
2
√
(x^2 −1)
(b)
1
2
√
(x^2 +1)
]