DIFFERENTIATION OF INVERSE TRIGONOMETRIC AND HYPERBOLIC FUNCTIONS 341G
Problem 19. Determine∫
dx
√
(x^2 +4)Since
d
dx(
sinh−^1x
a)
=1
√
(x^2 +a^2 )then
∫
dx
√
(x^2 +a^2 )=sinh−^1x
a+cHence
∫
1
√
(x^2 +4)dx =∫
1
√
(x^2 + 22 )dx=sinh−^1x
2+cProblem 20. Determine∫
4
√
(x^2 −3)dx.Since
d
dx(
cosh−^1x
a)
=1
√
(x^2 −a^2 )then
∫
1
√
(x^2 −a^2 )dx=cosh−^1x
a+cHence
∫
4
√
(x^2 −3)dx= 4∫
1
√
[x^2 −(√
3)^2 ]dx=4 cosh−^1x
√
3+cProblem 21. Find∫
2
(9− 4 x^2 )dx.Since tanh−^1
x
a=a
a^2 −x^2then
∫
a
a^2 −x^2dx=tanh−^1x
a+ci.e.
∫
1
a^2 −x^2dx=1
atanh−^1x
a+cHence
∫
2
(9− 4 x^2 )dx= 2∫
1
4( 9
4 −x2)dx=1
2∫
1
[(
3
2) 2
−x^2]dx=1
2[
1
( 3
2)tanh−^1x
( 3
2)+c]i.e.∫
2
(9− 4 x^2 )dx=1
3tanh−^12 x
3+cNow try the following exercise.Exercise 138 Further problems on differen-
tiation of inverse hyperbolic functionsIn Problems 1 to 11, differentiate with respect to
the variable.- (a) sinh−^1
x
3(b) sinh−^14 x
[(a)1
√
(x^2 +9)(b)4
√
(16x^2 +1)]- (a) 2 cosh−^1
t
3(b)1
2cosh−^12 θ
[(a)2
√
(t^2 −9)(b)1
√
(4θ^2 −1)]- (a) tanh−^1
2 x
5(b) 3 tanh−^13 x
[
(a)10
25 − 4 x^2(b)9
(1− 9 x^2 )]- (a) sech−^1
3 x
4(b)−1
2sech−^12 x
[(a)− 4x√
(16− 9 x^2 )(b)12 x√
(1− 4 x^2 )]- (a) cosech−^1
x
4(b)1
2cosech−^14 x
[(a)− 4x√
(x^2 +16)(b)− 12 x√
(16x^2 +1)]- (a) coth−^1
2 x
7(b)1
4coth−^13 t
[
(a)14
49 − 4 x^2(b)3
4(1− 9 t^2 )]- (a) 2 sinh−^1
√
(x^2 −1)(b)1
2cosh−^1√
(x^2 +1)
[(a)2
√
(x^2 −1)(b)12√
(x^2 +1)]