Higher Engineering Mathematics

(Greg DeLong) #1
DIFFERENTIATION OF INVERSE TRIGONOMETRIC AND HYPERBOLIC FUNCTIONS 341

G

Problem 19. Determine


dx

(x^2 +4)

Since


d
dx

(
sinh−^1

x
a

)
=

1

(x^2 +a^2 )

then



dx

(x^2 +a^2 )

=sinh−^1

x
a

+c

Hence



1

(x^2 +4)

dx =


1

(x^2 + 22 )

dx

=sinh−^1

x
2

+c

Problem 20. Determine


4

(x^2 −3)

dx.

Since


d
dx

(
cosh−^1

x
a

)
=

1

(x^2 −a^2 )

then



1

(x^2 −a^2 )

dx=cosh−^1

x
a

+c

Hence



4

(x^2 −3)

dx= 4


1

[x^2 −(


3)^2 ]

dx

=4 cosh−^1

x

3

+c

Problem 21. Find


2
(9− 4 x^2 )

dx.

Since tanh−^1


x
a

=

a
a^2 −x^2

then



a
a^2 −x^2

dx=tanh−^1

x
a

+c

i.e.



1
a^2 −x^2

dx=

1
a

tanh−^1

x
a

+c

Hence



2
(9− 4 x^2 )

dx= 2


1
4

( 9
4 −x

2

)dx

=

1
2


1
[(
3
2

) 2
−x^2

]dx

=

1
2

[
1
( 3
2

)tanh−^1

x
( 3
2

)+c

]

i.e.


2
(9− 4 x^2 )

dx=

1
3

tanh−^1

2 x
3

+c

Now try the following exercise.

Exercise 138 Further problems on differen-
tiation of inverse hyperbolic functions

In Problems 1 to 11, differentiate with respect to
the variable.


  1. (a) sinh−^1


x
3

(b) sinh−^14 x
[

(a)

1

(x^2 +9)

(b)

4

(16x^2 +1)

]


  1. (a) 2 cosh−^1


t
3

(b)

1
2

cosh−^12 θ
[

(a)

2

(t^2 −9)

(b)

1

(4θ^2 −1)

]


  1. (a) tanh−^1


2 x
5

(b) 3 tanh−^13 x
[
(a)

10
25 − 4 x^2

(b)

9
(1− 9 x^2 )

]


  1. (a) sech−^1


3 x
4

(b)−

1
2

sech−^12 x
[

(a)

− 4

x


(16− 9 x^2 )

(b)

1

2 x


(1− 4 x^2 )

]


  1. (a) cosech−^1


x
4

(b)

1
2

cosech−^14 x
[

(a)

− 4

x


(x^2 +16)

(b)

− 1

2 x


(16x^2 +1)

]


  1. (a) coth−^1


2 x
7

(b)

1
4

coth−^13 t
[
(a)

14
49 − 4 x^2

(b)

3
4(1− 9 t^2 )

]


  1. (a) 2 sinh−^1



(x^2 −1)

(b)

1
2

cosh−^1


(x^2 +1)
[

(a)

2

(x^2 −1)

(b)

1

2


(x^2 +1)

]
Free download pdf