Higher Engineering Mathematics

(Greg DeLong) #1

348 DIFFERENTIAL CALCULUS



  1. z=2lnxy




(a)

− 2
x^2

(b)

− 2
y^2
(c) 0 (d) 0




  1. z=


(x−y)
(x+y)






(a)

− 4 y
(x+y)^3

(b)

4 x
(x+y)^3

(c)

2(x−y)
(x+y)^3

(d)

2(x−y)
(x+y)^3







  1. z=sinhxcosh 2y







(a) sinhxcosh 2y
(b) 4 sinhxcosh 2y
(c) 2 coshxsinh 2y
(d) 2 coshxsinh 2y







  1. Given z=x^2 sin (x− 2 y) find (a)


∂^2 z
∂x^2

and

(b)

∂^2 z
∂y^2

Show also that

∂^2 z
∂x∂y

=

∂^2 z
∂y∂x
= 2 x^2 sin(x− 2 y)− 4 xcos(x− 2 y).




(a) (2−x^2 ) sin (x− 2 y)
+ 4 xcos (x− 2 y)

(b)− 4 x^2 sin (x− 2 y)






  1. Find


∂^2 z
∂x^2

,

∂^2 z
∂y^2

and show that

∂^2 z
∂x∂y

=

∂^2 z
∂y∂x
whenz=arccos

x
y

⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣
(a)

∂^2 z
∂x^2

=

−x

(y^2 −x^2 )^3

,

(b)

∂^2 z
∂y^2

=

−x

(y^2 −x^2 )

{
1
y^2

+

1
(y^2 −x^2 )

}

(c)

∂^2 z
∂x∂y

=

∂^2 z
∂y∂x

=

y

(y^2 −x^2 )^3

⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦


  1. Givenz=


√(
3 x
y

)
show that

∂^2 z
∂x∂y

=

∂^2 z
∂y∂x

and evaluate

∂^2 z
∂x^2

when

x=

1
2

andy=3.

[

1

2

]


  1. An equation used in thermodynamics is the
    Benedict-Webb-Rubine equation of state for
    the expansion of a gas. The equation is:


p=

RT
V

+

(
B 0 RT−A 0 −

C 0
T^2

)
1
V^2

+(bRT−a)

1
V^3

+


V^6

+

C

(
1 +

γ
V^2

)

T^2

(
1
V^3

)
e−

γ
V^2

Show that

∂^2 p
∂T^2

=

6
V^2 T^4

{
C
V

(
1 +

γ
V^2

)
e

−Vγ 2
−C 0

}
Free download pdf