INTEGRATION USING TRIGONOMETRIC AND HYPERBOLIC SUBSTITUTIONS 399H
Now try the following exercise.
Exercise 156 Further problems on integra-
tion of sin^2 x, cos^2 x, tan^2 xand cot^2 xIn Problems 1 to 4, integrate with respect to the
variable.- sin^22 x
[
1
2(
x−sin 4x
4)
+c]- 3 cos^2 t
[
3
2(
t+sin 2t
2)
+c]- 5 tan^23 θ
[
5(
1
3tan 3θ−θ)
+c]- 2 cot^22 t [−(cot 2t+ 2 t)+c]
In Problems 5 to 8, evaluate the definite integrals,
correct to 4 significant figures.
5.∫ π
303 sin^23 xdx[π2or 1. 571]6.∫ π
40cos^24 xdx[π8or 0. 3927]7.∫ 102 tan^22 tdt [− 4 .185]8.∫ π
3
π
6cot^2 θdθ [0.6311]40.3 Worked problems on powers of
sines and cosines
Problem 5. Determine∫
sin^5 θdθ.Since cos^2 θ+sin^2 θ=1 then sin^2 θ=(1−cos^2 θ).
Hence∫
sin^5 θdθ=∫
sinθ( sin^2 θ)^2 dθ=∫
sinθ(1−cos^2 θ)^2 dθ=∫
sinθ(1−2 cos^2 θ+cos^4 θ)dθ=∫
(sinθ−2 sinθcos^2 θ+sinθcos^4 θ)dθ=−cosθ+2 cos^3 θ
3−cos^5 θ
5+c[Whenever a power of a cosine is multiplied by a
sine of power 1, or vice-versa, the integral may be
determined by inspection as shown.In general,∫
cosnθsinθdθ=−cosn+^1 θ
(n+1)+cand∫
sinnθcosθdθ =sinn+^1 θ
(n+1)+cProblem 6. Evaluate∫π
20sin^2 xcos^3 xdx.∫ π
2
0sin^2 xcos^3 xdx=∫π
2
0sin^2 xcos^2 xcosxdx=∫ π
20(sin^2 x)(1−sin^2 x)(cosx)dx=∫ π
20(sin^2 xcosx−sin^4 xcosx)dx=[
sin^3 x
3−sin^5 x
5]π
20=⎡⎢
⎣(
sinπ
2) 33−(
sinπ
2) 55⎤⎥
⎦−[0−0]=1
3−1
5=2
15or 0. 1333Problem 7. Evaluate∫π
404 cos^4 θdθ, correctto 4 significant figures.∫ π
404 cos^4 θdθ= 4∫ π
40(cos^2 θ)^2 dθ= 4∫ π
40[
1
2(1+cos 2θ)] 2
dθ=∫ π
40(1+2 cos 2θ+cos^22 θ)dθ=∫ π
40[
1 +2 cos 2θ+1
2(1+cos 4θ)]
dθ=∫ π
40(
3
2+2 cos 2θ+1
2cos 4θ)
dθ