Higher Engineering Mathematics

(Greg DeLong) #1
INTEGRATION USING TRIGONOMETRIC AND HYPERBOLIC SUBSTITUTIONS 399

H

Now try the following exercise.


Exercise 156 Further problems on integra-
tion of sin^2 x, cos^2 x, tan^2 xand cot^2 x

In Problems 1 to 4, integrate with respect to the
variable.


  1. sin^22 x


[
1
2

(
x−

sin 4x
4

)
+c

]


  1. 3 cos^2 t


[
3
2

(
t+

sin 2t
2

)
+c

]


  1. 5 tan^23 θ


[
5

(
1
3

tan 3θ−θ

)
+c

]


  1. 2 cot^22 t [−(cot 2t+ 2 t)+c]
    In Problems 5 to 8, evaluate the definite integrals,
    correct to 4 significant figures.


5.

∫ π
3

0

3 sin^23 xdx


2

or 1. 571

]

6.

∫ π
4

0

cos^24 xdx


8

or 0. 3927

]

7.

∫ 1

0

2 tan^22 tdt [− 4 .185]

8.

∫ π
3
π
6

cot^2 θdθ [0.6311]

40.3 Worked problems on powers of


sines and cosines


Problem 5. Determine


sin^5 θdθ.

Since cos^2 θ+sin^2 θ=1 then sin^2 θ=(1−cos^2 θ).


Hence


sin^5 θdθ

=


sinθ( sin^2 θ)^2 dθ=


sinθ(1−cos^2 θ)^2 dθ

=


sinθ(1−2 cos^2 θ+cos^4 θ)dθ

=


(sinθ−2 sinθcos^2 θ+sinθcos^4 θ)dθ

=−cosθ+

2 cos^3 θ
3


cos^5 θ
5

+c

[Whenever a power of a cosine is multiplied by a
sine of power 1, or vice-versa, the integral may be
determined by inspection as shown.

In general,


cosnθsinθdθ=

−cosn+^1 θ
(n+1)

+c

and


sinnθcosθdθ =

sinn+^1 θ
(n+1)

+c

Problem 6. Evaluate

∫π
2

0

sin^2 xcos^3 xdx.

∫ π
2
0

sin^2 xcos^3 xdx=

∫π
2
0

sin^2 xcos^2 xcosxdx

=

∫ π
2

0

(sin^2 x)(1−sin^2 x)(cosx)dx

=

∫ π
2

0

(sin^2 xcosx−sin^4 xcosx)dx

=

[
sin^3 x
3


sin^5 x
5


2

0

=




(
sin

π
2

) 3

3


(
sin

π
2

) 5

5



⎦−[0−0]

=

1
3


1
5

=

2
15

or 0. 1333

Problem 7. Evaluate

∫π
4

0

4 cos^4 θdθ, correct

to 4 significant figures.

∫ π
4

0

4 cos^4 θdθ= 4

∫ π
4

0

(cos^2 θ)^2 dθ

= 4

∫ π
4

0

[
1
2

(1+cos 2θ)

] 2

=

∫ π
4

0

(1+2 cos 2θ+cos^22 θ)dθ

=

∫ π
4

0

[
1 +2 cos 2θ+

1
2

(1+cos 4θ)

]

=

∫ π
4

0

(
3
2

+2 cos 2θ+

1
2

cos 4θ

)
Free download pdf