Higher Engineering Mathematics

(Greg DeLong) #1

400 INTEGRAL CALCULUS


=

[
3 θ
2

+sin 2θ+

sin 4θ
8


4

0

=

[
3
2


4

)
+sin

2 π
4

+

sin 4(π/4)
8

]
−[0]

=

3 π
8

+ 1 = 2. 178 ,

correct to 4 significant figures

Problem 8. Find


sin^2 tcos^4 tdt.


sin^2 tcos^4 tdt=


sin^2 t(cos^2 t)^2 dt

=

∫ (
1 −cos 2t
2

)(
1 +cos 2t
2

) 2
dt

=

1
8


(1−cos 2t)(1+2 cos 2t+cos^22 t)dt

=

1
8


(1+2 cos 2t+cos^22 t−cos 2t

−2 cos^22 t−cos^32 t)dt

=

1
8


(1+cos 2t−cos^22 t−cos^32 t)dt

=

1
8

∫ [
1 +cos 2t−

(
1 +cos 4t
2

)

−cos 2t(1−sin^22 t)

]
dt

=

1
8

∫ (
1
2


cos 4t
2

+cos 2tsin^22 t

)
dt

=

1
8

(
t
2


sin 4t
8

+

sin^32 t
6

)

+c

Now try the following exercise.


Exercise 157 Further problems on integra-
tion of powers of sines and cosines

In Problems 1 to 6, integrate with respect to the
variable.


  1. sin^3 θ


[
(a)−cosθ+

cos^3 θ
3

+c

]


  1. 2 cos^32 x


[
sin 2x−

sin^32 x
3

+c

]


  1. 2 sin^3 tcos^2 t [
    − 2
    3


cos^3 t+

2
5

cos^5 t+c

]


  1. sin^3 xcos^4 x


[
−cos^5 x
5

+

cos^7 x
7

+c

]


  1. 2 sin^42 θ [
    3 θ
    4



1
4

sin 4θ+

1
32

sin 8θ+c

]


  1. sin^2 tcos^2 t


[
t
8


1
32

sin 4t+c

]

40.4 Worked problems on integration
of products of sines and cosines

Problem 9. Determine


sin 3tcos 2tdt.


sin 3tcos 2tdt

=


1
2

[sin (3t+ 2 t)+sin (3t− 2 t)] dt,

from 6 of Table 40.1, which follows from Sec-
tion 18.4, page 183,

=

1
2


(sin 5t+sint)dt

=

1
2

(
−cos 5t
5

−cost

)
+c

Problem 10. Find


1
3

cos 5xsin 2xdx.


1
3

cos 5xsin 2xdx

=

1
3


1
2

[sin (5x+ 2 x)−sin (5x− 2 x)] dx,

from 7 of Table 40.1

=

1
6


(sin 7x−sin 3x)dx

=

1
6

(
−cos 7x
7

+

cos 3x
3

)
+c
Free download pdf