400 INTEGRAL CALCULUS
=
[
3 θ
2
+sin 2θ+
sin 4θ
8
]π
4
0
=
[
3
2
(π
4
)
+sin
2 π
4
+
sin 4(π/4)
8
]
−[0]
=
3 π
8
+ 1 = 2. 178 ,
correct to 4 significant figures
Problem 8. Find
∫
sin^2 tcos^4 tdt.
∫
sin^2 tcos^4 tdt=
∫
sin^2 t(cos^2 t)^2 dt
=
∫ (
1 −cos 2t
2
)(
1 +cos 2t
2
) 2
dt
=
1
8
∫
(1−cos 2t)(1+2 cos 2t+cos^22 t)dt
=
1
8
∫
(1+2 cos 2t+cos^22 t−cos 2t
−2 cos^22 t−cos^32 t)dt
=
1
8
∫
(1+cos 2t−cos^22 t−cos^32 t)dt
=
1
8
∫ [
1 +cos 2t−
(
1 +cos 4t
2
)
−cos 2t(1−sin^22 t)
]
dt
=
1
8
∫ (
1
2
−
cos 4t
2
+cos 2tsin^22 t
)
dt
=
1
8
(
t
2
−
sin 4t
8
+
sin^32 t
6
)
+c
Now try the following exercise.
Exercise 157 Further problems on integra-
tion of powers of sines and cosines
In Problems 1 to 6, integrate with respect to the
variable.
- sin^3 θ
[
(a)−cosθ+
cos^3 θ
3
+c
]
- 2 cos^32 x
[
sin 2x−
sin^32 x
3
+c
]
- 2 sin^3 tcos^2 t [
− 2
3
cos^3 t+
2
5
cos^5 t+c
]
- sin^3 xcos^4 x
[
−cos^5 x
5
+
cos^7 x
7
+c
]
- 2 sin^42 θ [
3 θ
4
−
1
4
sin 4θ+
1
32
sin 8θ+c
]
- sin^2 tcos^2 t
[
t
8
−
1
32
sin 4t+c
]
40.4 Worked problems on integration
of products of sines and cosines
Problem 9. Determine
∫
sin 3tcos 2tdt.
∫
sin 3tcos 2tdt
=
∫
1
2
[sin (3t+ 2 t)+sin (3t− 2 t)] dt,
from 6 of Table 40.1, which follows from Sec-
tion 18.4, page 183,
=
1
2
∫
(sin 5t+sint)dt
=
1
2
(
−cos 5t
5
−cost
)
+c
Problem 10. Find
∫
1
3
cos 5xsin 2xdx.
∫
1
3
cos 5xsin 2xdx
=
1
3
∫
1
2
[sin (5x+ 2 x)−sin (5x− 2 x)] dx,
from 7 of Table 40.1
=
1
6
∫
(sin 7x−sin 3x)dx
=
1
6
(
−cos 7x
7
+
cos 3x
3
)
+c