400 INTEGRAL CALCULUS
=[
3 θ
2+sin 2θ+sin 4θ
8]π
40=[
3
2(π4)
+sin2 π
4+sin 4(π/4)
8]
−[0]=3 π
8+ 1 = 2. 178 ,correct to 4 significant figuresProblem 8. Find∫
sin^2 tcos^4 tdt.∫
sin^2 tcos^4 tdt=∫
sin^2 t(cos^2 t)^2 dt=∫ (
1 −cos 2t
2)(
1 +cos 2t
2) 2
dt=1
8∫
(1−cos 2t)(1+2 cos 2t+cos^22 t)dt=1
8∫
(1+2 cos 2t+cos^22 t−cos 2t−2 cos^22 t−cos^32 t)dt=1
8∫
(1+cos 2t−cos^22 t−cos^32 t)dt=1
8∫ [
1 +cos 2t−(
1 +cos 4t
2)−cos 2t(1−sin^22 t)]
dt=1
8∫ (
1
2−cos 4t
2+cos 2tsin^22 t)
dt=1
8(
t
2−sin 4t
8+sin^32 t
6)+cNow try the following exercise.
Exercise 157 Further problems on integra-
tion of powers of sines and cosinesIn Problems 1 to 6, integrate with respect to the
variable.- sin^3 θ
[
(a)−cosθ+cos^3 θ
3+c]- 2 cos^32 x
[
sin 2x−sin^32 x
3+c]- 2 sin^3 tcos^2 t [
− 2
3
cos^3 t+2
5cos^5 t+c]- sin^3 xcos^4 x
[
−cos^5 x
5+cos^7 x
7+c]- 2 sin^42 θ [
3 θ
4
−1
4sin 4θ+1
32sin 8θ+c]- sin^2 tcos^2 t
[
t
8−1
32sin 4t+c]40.4 Worked problems on integration
of products of sines and cosinesProblem 9. Determine∫
sin 3tcos 2tdt.∫
sin 3tcos 2tdt=∫
1
2[sin (3t+ 2 t)+sin (3t− 2 t)] dt,from 6 of Table 40.1, which follows from Sec-
tion 18.4, page 183,=1
2∫
(sin 5t+sint)dt=1
2(
−cos 5t
5−cost)
+cProblem 10. Find∫
1
3cos 5xsin 2xdx.∫
1
3cos 5xsin 2xdx=1
3∫
1
2[sin (5x+ 2 x)−sin (5x− 2 x)] dx,from 7 of Table 40.1=1
6∫
(sin 7x−sin 3x)dx=1
6(
−cos 7x
7+cos 3x
3)
+c